3,219 results match your criteria: "Korea Basic Science Institute[Affiliation]"

In plant cells, ALMTs are key plasma and vacuolar membrane-localized anion channels regulating plant responses to the environment. Vacuolar ALMTs control anion accumulation in plant cells and, in guard cells, they regulate stomata aperture. The activation of vacuolar ALMTs depends on voltage and cytosolic malate, but the underlying molecular mechanisms remain elusive.

View Article and Find Full Text PDF

Throughout millennia, medicinal plants have been crucial in preserving human well-being and enhancing the whole human experience. , sometimes referred to as the "sensitive plant," possesses considerable promise in the discovery of innovative herbal remedies. The objective of our research is to examine the various pharmacological uses of this mysterious plant by undertaking a thorough investigation of its methanolic extract.

View Article and Find Full Text PDF

Changes in the shape and composition of kimchi cabbage cells due to brine and seasoning penetration were observed by serial block-face (SBF)-scanning electron microscopy (SEM) imaging and energy dispersive X-ray spectroscopy (EDS). Raw kimchi cabbage (RKC), unfermented kimchi (UKC), and fermented kimchi (FKC) were prepared as samples. Given the osmotic pressure caused by salt, the cell sizes of UKC and FKC were reduced compared to those of RKC and transformed into a thin and elongated rectangular shape.

View Article and Find Full Text PDF

In this study, we analyzed effects of drone pupae aqueous extract powder (DEP) on proliferation and differentiation of Hanwoo myosatellite cells (HSC). Results of amino acid, vitamin, and mineral analysis of drone pupae revealed the presence of branched-chain amino acids, Glu, essential amino acids, vitamins B6, C and Mg, K, and so on. Additionally, drone pupae were shown to have an antioxidant ability.

View Article and Find Full Text PDF

Background: Metabolite production is essential for the proliferation and environmental adaptation of all living organisms. In pathogenic bacteria, metabolite exchange during host infection can regulate their physiology and virulence. However, there is still much unknown about which specific metabolic pathways in pathogenic bacteria respond to changes in the environment during infections.

View Article and Find Full Text PDF

Large-sized and highly crystalline ceria nanorods with abundant Ce species achieve efficient intracellular ROS scavenging.

Nanoscale Horiz

March 2025

Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea.

Intracellular reactive oxygen species (ROS) are associated with various inflammatory physiological processes and diseases, highlighting the need for their regulation to mitigate the detrimental effects of oxidative stress and to reduce cellular damage and disease progression. Here, we demonstrate cerium oxide (ceria) nanorods synthesized using a sol-gel method followed by heat treatment, called "AHT-CeNRs", as an efficient intracellular ROS scavenger. The synthesized AHT-CeNRs exhibited exceptional superoxide dismutase (SOD) and catalase (CAT)-like activities, both of which are crucial for converting ROS into harmless products.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disease driven by immune dysregulation. This study investigated the relationship between gut microbiota and lupus severity using the MRL/lpr lupus mouse model. Mice were grouped based on total immunoglobulin (Ig)G, IgG2a levels, and urine albumin-to-creatinine ratio (ACR), allowing for the comparison of gut microbiota profiles across different disease severities.

View Article and Find Full Text PDF

Achieving high energy densities in lithium-ion batteries requires advancements in electrode materials and design. This study investigated the incorporation of multi-walled carbon nanotubes (MWCNTs) with high commercial viability as conductive additives into two types of high-nickel cathode materials, LiNiCoMnO and LiNiCoMnO. To ensure a uniform distribution within the electrodes, MWCNTs were uniformly dispersed in the solvent using ultrasonication, the most effective and straightforward dispersion method.

View Article and Find Full Text PDF

The late endolysosomal compartment plays a crucial role in cancer cell metabolism by regulating lysosomal activity, essential for cell proliferation, and the degradation of cellular components during the final stages of autophagy. Modulating late endolysosomal function represents a new target for cancer therapy. In this study, we investigated the effects of bafilomycin A1 (BA1), a vacuolar H-ATPase inhibitor, on colon cancer and normal colon fibroblasts (CCD-18Co) cells.

View Article and Find Full Text PDF

Gas sensor arrays are versatile and powerful tools for gas detection and analysis, enabling a wide range of applications across numerous industries. Critically, the accuracy and reliability of these arrays depend on the distinct gas sensing behavior or selectivity of the individual component gas sensors. However, studies of such arrays often consider only overly idealized scenarios, and the interaction between gas molecules is not typically considered in such studies.

View Article and Find Full Text PDF

Diphenylamine (DPA) serves as an inhibitor to manage several infections and naturally occurring terpenes on fruits, which can be injurious to animals and humans. In this study, we developed tin sulfide (SnS) decorated on carbon nanofibers (CF) embedded with lanthanum stannate (La₂Sn₂O₇) and modified on glassy carbon electrodes (GCEs). Decorating the CF-LS with a SnS enhances electron transfer and introduces additional adsorption sites, facilitating the adsorption and catalytic dissociation of O molecules, thereby improving target sensitivity and selectivity.

View Article and Find Full Text PDF

Despite numerous efforts involving surface coating, doping, and alloying, maintaining surface stability of metal at high temperatures without compromising intrinsic properties has remained challenging. Here, we present a pragmatic method to address the accelerated oxidation of Cu, Ni, and Fe at temperatures exceeding 200 °C. Inspired by the concept that oxygen (O) itself can effectively obstruct the pathway of O infiltration, this study proposes the immobilization of O on the metal surface.

View Article and Find Full Text PDF

Tubular ER structures shaped by ER-phagy receptors engage in stress-induced Golgi bypass.

Dev Cell

June 2025

Department of Pharmacology, Woo Choo Lee Institute for Precision Drug Development, Graduate School of Medical Science Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea. Electronic address:

Cellular stresses, particularly endoplasmic reticulum (ER) stress induced by ER-to-Golgi transport blockade, trigger Golgi-independent secretion of cytosolic and transmembrane proteins. However, the molecular mechanisms underlying this unconventional protein secretion (UPS) remain largely elusive. Here, we report that an ER tubulovesicular structure (ER tubular body [ER-TB]), shaped by the tubular ER-phagy receptors ATL3 and RTN3L, plays an important role in stress-induced UPS of transmembrane proteins such as cystic fibrosis transmembrane conductance regulator (CFTR) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein.

View Article and Find Full Text PDF

Aberrant phase separation- and stress granule (SG)-mediated cytosolic aggregation of TDP-43 in motor neurons is the hallmark of amyotrophic lateral sclerosis (ALS). In this study, we found that graphene quantum dots (GQDs) potentially modulate TDP-43 aggregation during SG dynamics and phase separation. The intrinsically disordered region in the C-terminus of TDP-43 exhibited amyloid fibril formation; however, GQDs inhibited the formation of amyloid fibrils through direct intermolecular interactions with TDP-43.

View Article and Find Full Text PDF

Proton-electron coupling and mixed conductivity in a hydrogen-bonded coordination polymer.

Nat Commun

February 2025

Department of Chemical and Biological Engineering, Andong National University (ANU), 1375 Gyeongdong-ro, Andong, Gyeongbuk, 36729, Republic of Korea.

The fundamental understanding of coupled proton-electron transport in mixed protonic-electronic conductors (MPECs) remains unexplored in materials science, despite its potential significance within the broader context of mixed ionic-electronic conductors (MIECs) and the possibility of controlled diffusion of protons using hydrogen-bond networks. To address these limitations, we present a hydrogen-bonded coordination polymer Ni-BAND ({[Ni(bpy)(HO)(DMF)](NO)·2DMF}), which demonstrates high mixed protonic-electronic conductivity at room temperature. Through detailed analysis, we unravel the coupled transport mechanism, offering insights for the rational design of high-performance MPECs.

View Article and Find Full Text PDF

The development of nanodrugs targeting multidrug-resistant bacteria, while sparing the beneficial constituents of the microbiome, has emerged as a promising approach to combat disease and curb the rise of antimicrobial resistance. In this investigation, we devised a siderophore-functionalized nanodrug based on a gold nanoparticle construct (AuNP-NSC; Gold nanoparticle_-heterocyclic_Siderophore_Cyanine7), offering an innovative treatment modality against drug-resistant bacterial pathogens. As a proof of concept, the efficacy of this nanodrug delivery and antimicrobial therapy was evaluated against the notoriously resistant bacterium .

View Article and Find Full Text PDF

In terms of surface passivation for realizing efficient CsPbI-perovskite quantum dot (CsPbI-PQD)-based optoelectronic devices, phenethylammonium iodide (PEAI) is widely used during the ligand exchange. However, the PEA cation, due to its large ionic radius incompatible with the 3D perovskite framework, acts as an organic spacer within polycrystalline perovskites, leading to the formation of reduced dimensional perovskites (RDPs). Despite sharing the identical 3D perovskite framework, the influence of PEAI on the structure of CsPbI-PQDs remains unexplored.

View Article and Find Full Text PDF

The deposition of amyloid-β (Aβ) aggregates and metal ions within senile plaques is a hallmark of Alzheimer's disease (AD). Among the modifications observed in Aβ peptides, -terminal truncation at Phe4, yielding Aβ, is highly prevalent in AD-affected brains and significantly alters Aβ's metal-binding and aggregation profiles. Despite the abundance of Zn(II) in senile plaques, its impact on the aggregation and toxicity of Aβ remains unexplored.

View Article and Find Full Text PDF

Epoxides are versatile chemical intermediates that are used in the manufacture of diversified industrial products. For decades, thermochemical conversion has long been employed as the primary synthetic route. However, it has several drawbacks, such as harsh and explosive operating conditions, as well as a significant greenhouse gas emissions problem.

View Article and Find Full Text PDF

A Natural Autophagy Activator Castanea crenata Flower Alleviates Skeletal Muscle Ageing.

J Cachexia Sarcopenia Muscle

February 2025

Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.

Background: Sarcopenia, characterized by a gradual decline in skeletal muscle mass and function with age, significantly impacts both quality of life and mortality. Autophagy plays a crucial role in maintaining muscle health. There is growing interest in leveraging autophagy to mitigate muscle ageing effects.

View Article and Find Full Text PDF

Metabolomics and network pharmacology approach to identify potential bioactive compounds from Trichoderma sp. against oral squamous cell carcinoma.

Comput Biol Chem

April 2025

Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; Elicure, 12, Gyeongyeol-ro 17 beon-gil, Seo-gu, Gwangju, Republic of Korea. Electronic address:

This study aimed to profile metabolites from five Trichoderma strains and assess their cytotoxic and pharmacological activities, particularly targeting oral squamous cell carcinoma (OSCC). UHPLC-TOF-MS analysis revealed the presence of 25 compounds, including heptelidic acid, viridiol isomers, and sorbicillinol from the different Trichoderma extracts. Pharmacokinetic analysis showed moderate permeability and low interaction with P-glycoprotein, suggesting good drug absorption with minimal interference in cellular uptake.

View Article and Find Full Text PDF

Monosodium urate crystal accumulation in the joints is the cause of gout, an inflammatory arthritis that is initiated by elevated serum uric acid levels. It is the most prevalent form of inflammatory arthritis, affecting millions worldwide, and requires effective treatments. The necessity for alternatives with fewer side effects is underscored by the frequent adverse effects of conventional therapies, such as urate-lowering drugs.

View Article and Find Full Text PDF

Sestrin2 ameliorates age-related spontaneous benign prostatic hyperplasia via activation of AMPK/mTOR dependent autophagy.

Biogerontology

January 2025

Department of Veterinary Medicine, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea.

Benign prostatic hyperplasia (BPH), characterized as a chronic disease with unregulated enlargement of prostatic gland, is commonly observed in elderly men leading to lower urinary tract dysfunction. Sestrin2 plays a role in the maintenance of cellular homeostasis and protects organisms from various stimuli. The exact role of Sestrin2 in the etiology of BPH, a common age-related disease, remains unknown.

View Article and Find Full Text PDF

The current study aimed to quantify the length progression of enamel microcracks (EMCs) after debonding metal and ceramic brackets, implementing OCT as a diagnostic tool. The secondary objectives included a three-dimensional assessment of EMC width and depth and the formation of new EMCs. OCT imaging was performed on 16 extracted human premolars before bonding and after debonding.

View Article and Find Full Text PDF

Nanoporous anodic alumina (nPAA) films formed on aluminum in lower aliphatic carboxylic acids exhibit blue self-coloring and characteristic properties such as photoluminescence (PL), electroluminescence, and electron spin resonance. The blue colors are seemingly originated from the adsorbed radicals incorporating into the oxide during the aluminum anodization. However, there is lack of reports revealing the detailed activation mechanism of the adatoms in the complexes.

View Article and Find Full Text PDF