98%
921
2 minutes
20
Multi-regional clinical trials (MRCTs) have recently become a popular strategy for novel drug development, contributing to the early access to novel medicines in participating regions by enhancing development efficiency. To further facilitate MRCTs in Asia, the Japanese government has financially supported research activities in Japan for over 15 years that have studied the effect of ethnic factors on drug responses and identified practical challenges in conducting MRCTs in Asia. This mini-review highlights these research outcomes and related articles and presents our perspective on the current situation and future direction of MRCTs to explore opportunities for more collaboration between Japan and other East Asian/South-East Asian countries to facilitate drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cts.70347 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12417800 | PMC |
Physiol Plant
September 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China.
The rice root system mediates nutrient uptake while adapting to tillage, management, and environmental changes. While optimized nitrogen (N) supply is known to enhance 2-acetyl-1-pyrroline (2-AP) biosynthesis in fragrant rice, the underlying mechanisms linking nitrogen availability, root development, and their combined effects on physiological processes and aroma formation remain unclear. To address this knowledge gap, we conducted a pot experiment employing two fragrant rice cultivars (Huahangxiangyinzhen and Qingxiangyou19xiang) under three nitrogen regimes (0, 1.
View Article and Find Full Text PDFChembiochem
September 2025
Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
Natural products exhibit a wide range of biological activities and are the crucial resources for drug development and compound modification. Cytochrome P450 enzymes (P450s, CYP) are a class of multifunctional and stereoselective biocatalysts that utilize heme as a cofactor and can be employed in the biosynthesis of natural products. With the development of biotechnology, P450s have been widely applied in the synthesis of natural products.
View Article and Find Full Text PDFChembiochem
September 2025
School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.
The ATPase caseinolytic protease X (ClpX), forming the ClpXP complex with caseinolytic protease P (ClpP), is essential for mitochondrial protein homeostasis. While ClpP targeting is a recognized anticancer strategy, the role of ClpX in cancer remains underexplored. In pancreatic ductal adenocarcinoma (PDAC), elevated CLPX expression correlates with poor prognosis, suggesting its oncogenic function.
View Article and Find Full Text PDFLiver Int
October 2025
GastroZentrum Hirslanden, Digestive Disease Center, Zürich, Switzerland.
Background And Aims: Cholangiopathies, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and post-COVID-19 cholangiopathy (PCC), involve chronic cholangiocyte injury, senescence, epithelial-stromal crosstalk, and progressive fibrosis. However, effective in vitro models to capture these interactions are limited. Here, we present a scaffold-free 3D multilineage spheroid model, composed of hepatocyte-like cells (HepG2), cholangiocytes (H69), and hepatic stellate cells (LX-2), designed to recapitulate early fibrogenic responses driven by senescent cholangiocytes.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, College of Modern Chinese Medicine Industry, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by joint inflammation, damage, and disability. Activated fibroblast-like synoviocytes (FLSs), abundant in RA synovium, crucially facilitate disease progression. These activated FLSs drive RA pathogenesis by upregulating adhesion molecules, proinflammatory cytokines, chemokines, and major histocompatibility complex class II (MHC-II).
View Article and Find Full Text PDF