The barriers for uptake of artificial intelligence in hepatology and how to overcome them.

J Hepatol

Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany; Department of Medicine I, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; Medical Oncology, National Center for Tumor Disease

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Artificial intelligence (AI) methods in hepatology have proliferated since the mid-2010s, with numerous publications and some regulatory approvals. Yet, adoption of AI methods in real-world clinical practice and clinical research remains limited. Despite clear benefits of using AI to analyze complex data types in hepatology, such as histopathology, radiology images, multi-omics and more recently, natural language patient data, there are still substantial barriers and challenges to its integration into routine clinical workflows. Here, we assess limitations and propose a set of clear recommendations both for the AI systems as well as for the environment of hepatology to ease transition of AI-based diagnostic, prognostic or predictive systems into clinical care. In particular, we argue that the use of AI in clinical trials, seamless integration into hospital information systems and building AI literacy among clinicians will ultimately drive clinical adoption. We validate this perspective through a Delphi consensus involving 34 international experts from hepatology, AI, and data science, ensuring a comprehensive and consensus-driven evaluation of our recommendations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2025.07.003DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
clinical
6
hepatology
5
barriers uptake
4
uptake artificial
4
intelligence hepatology
4
hepatology overcome
4
overcome artificial
4
intelligence methods
4
methods hepatology
4

Similar Publications

Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.

View Article and Find Full Text PDF

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Use of artificial intelligence for classification of fractures around the elbow in adults according to the 2018 AO/OTA classification system.

BMC Musculoskelet Disord

September 2025

Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.

Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.

Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF