98%
921
2 minutes
20
Understanding the relationship between macro- and microevolutionary processes and their delimitation remains a challenge. This review focuses on the role of chromosomal rearrangements in plant population differentiation and lineage diversification resulting in speciation, helping bridge the gap between macro- and microevolution through chromosomal evolution. We focus on angiosperms, a group that comprises the majority of extant plant species diversity and exhibits the largest chromosomal and genomic variations. Here, we address the following questions: Are macroevolutionary patterns of chromosome evolution the result of accumulated microevolutionary changes, or do chromosomal dynamics drive larger shifts along the speciation continuum? At the macroevolutionary level, we investigated the association between karyotype diversity and diversification rates using evidence from comparative genomics, chromosomal evolution modelling across phylogenies, and the association with several traits across different angiosperm lineages. At the microevolutionary level, we explore if different karyotypes are linked to morphological changes and population genetic differentiation in the same lineages. Polyploidy (autopolyploidy and allopolyploidy) and dysploidy are known drivers of speciation, with karyotypic differences often leading to reproductive barriers. We found that dysploidy, involving gains and losses of single chromosomes with no significant change in overall content of the genome, appears to be relatively more frequent and persistent across macroevolutionary histories than polyploidy. Additionally, chromosomal rearrangements that do not entail change in chromosome number, such as insertions, deletions, inversions, and duplications of chromosome fragments, as well as translocations between chromosomes, are increasingly recognized for their role in local adaptation and speciation. We argue that there is more evidence linking chromosomal rearrangements with genetic and morphological trait differentiation at microevolutionary scales than at macroevolutionary ones. Our findings highlight the importance of selection across evolutionary scales, where certain chromosomal dynamics become fixed over macroevolutionary time. Consequently, at microevolutionary scales, chromosome rearrangements are frequent and diverse, serving as key drivers of plant diversification and adaptation by providing a pool of variation from which beneficial chromosomal changes can be selected and fixed by evolutionary forces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412334 | PMC |
http://dx.doi.org/10.3389/fpls.2025.1606450 | DOI Listing |
Plant Genome
September 2025
Department of Agronomy, Iowa State University, Ames, Iowa, USA.
Crop growth rate is a critical physiological trait for forage and bioenergy crops like sorghum [Sorghum bicolor (L.) Moench], influencing overall crop productivity, particularly in photoperiod-sensitive (PS) types. Crop growth rate studies focus on either a physiological approach utilizing a few genotypes to analyze biomass accumulation or a genetic approach characterizing easily scorable proxy traits in larger populations.
View Article and Find Full Text PDFGenome Biol
September 2025
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2025
Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK.
X-chromosome inactivation (XCI) in mammals is orchestrated by the noncoding RNA X-inactive-specific transcript (Xist) that, together with specific interacting proteins, functions in cis to silence an entire X chromosome. Defined sites on Xist RNA carry the N-methyladenosine (mA) modification and perturbation of the mA writer complex has been found to abrogate Xist-mediated gene silencing. However, the relative contribution of mA and its mechanism of action remain unclear.
View Article and Find Full Text PDFSTAR Protoc
September 2025
College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China. Electronic address:
High-throughput chromosome conformation capture (Hi-C) provides genome-wide insights into chromatin interactions within the three-dimensional structure of the nucleus, making it a powerful tool for studying genome architecture. Here, we provide a modified in situ Hi-C protocol for small cell numbers, utilizing 50-100 embryonic cells at the 8-cell stage to investigate chromatin organization during bovine early embryonic development. This protocol overcomes the challenges of limited sample availability and offers valuable insights into chromatin dynamics during bovine early embryogenesis.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan.
Methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin, is catalyzed by Clr4/Suv39. Clr4/Suv39 contains two conserved domains-an N-terminal chromodomain and a C-terminal catalytic domain-connected by an intrinsically disordered region (IDR). Several mechanisms have been proposed to regulate Clr4/Suv39 activity, but how it is regulated under physiological conditions remains largely unknown.
View Article and Find Full Text PDF