Engineering robust cell factory for improving fatty alcohol biosynthesis.

Synth Syst Biotechnol

Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 zhongshan Road, Dalian, 116023, PR China.

Published: December 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Engineering yeast cell factories is a feasible approach to produce value chemicals from renewable feedstocks. However, during the production process, reprogramming of the internal metabolic pathways of yeast cells and environmental stress always compromises its production performance. Here, we engineered the robust to enhance the production of fatty alcohols by downregulating the expression of target of rapamycin gene and deleting histone deacetylase gene in . The enhanced cellular robustness resulted in the extended chronological lifespan (CLS) through metabolic balance and stress response regulation, thus increasing the production of fatty alcohols by up to 56 %. This strategy may be used as a general strategy for building effective microbial cell factories.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408222PMC
http://dx.doi.org/10.1016/j.synbio.2025.08.003DOI Listing

Publication Analysis

Top Keywords

cell factories
8
production fatty
8
fatty alcohols
8
engineering robust
4
robust cell
4
cell factory
4
factory improving
4
improving fatty
4
fatty alcohol
4
alcohol biosynthesis
4

Similar Publications

Modifying cells to achieve desired functions has attracted extensive attention in bioengineering and bio-manufacturing. Approaches based on cell-surface engineering have the potential to endow cells with multiple functions and also create a protective shell around them. However, such shells are generally irreversible and lack functionality, leading to various drawbacks associated with irreversible dynamics.

View Article and Find Full Text PDF

A thermostable Cas9-based genome editing system for thermophilic acetogenic bacterium .

Appl Environ Microbiol

September 2025

Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China.

is a thermophilic acetogenic bacterium capable of thriving at elevated temperatures up to 66°C. It metabolizes carbohydrates such as glucose, mannose, and fructose and can also grow lithotrophically utilizing hydrogen (H) and carbon dioxide (CO) or carbon monoxide (CO), with acetate serving as its main product. A simple and efficient genome editing system for would not only facilitate the understanding of the physiological function of enzymes involved in energy and carbon metabolism but also enable metabolic engineering.

View Article and Find Full Text PDF

Engineering robust cell factory for improving fatty alcohol biosynthesis.

Synth Syst Biotechnol

December 2025

Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 zhongshan Road, Dalian, 116023, PR China.

Engineering yeast cell factories is a feasible approach to produce value chemicals from renewable feedstocks. However, during the production process, reprogramming of the internal metabolic pathways of yeast cells and environmental stress always compromises its production performance. Here, we engineered the robust to enhance the production of fatty alcohols by downregulating the expression of target of rapamycin gene and deleting histone deacetylase gene in .

View Article and Find Full Text PDF

A host/guest assembled hyaluronic acid-based supramolecular hydrogel with NIR-steered degradation capacity for enhanced tumor therapy through programmable drug release.

Carbohydr Polym

November 2025

Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan Un

Recently, a variety of stimulus-responsive hydrogel platforms have been developed, specifically designed to respond to changes in physiological signals within the disease microenvironment. However, due to the restricted regulation of drug release behavior in vivo by such hydrogel systems, the precise control of drug release kinetics has not been achieved. Therefore, developing precise drug delivery platforms that enable programmable and "on-off" delivery remains a challenge in this field.

View Article and Find Full Text PDF

Enzyme-Responsive Metallopeptide Hydrogel Enables Cancer Cell-Selective Prodrug Activation via Bioorthogonal Catalysis.

Small

September 2025

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China.

Chemotherapy is often hindered by systemic toxicity and poor selectivity. To address these issues, we develop an enzyme-responsive metallopeptide hydrogel (HY-Pd) that integrates enzyme-instructed self-assembly (EISA) and bioorthogonal catalysis for selective tumor-targeted prodrug activation. Upon exposure to alkaline phosphatase (ALP), which is overexpressed in osteosarcoma cells (Saos-2), HY-Pd selectively accumulates and self-assembles into catalytic nanofibers.

View Article and Find Full Text PDF