Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: The advancement of artificial intelligence (AI), particularly generative AI, has significantly transformed the field of medicine, impacting healthcare delivery, medical education, and research. While the opportunities are substantial, the implementation of AI also raises important ethical and technical challenges, including risks related to data bias, the potential erosion of clinical skills, and concerns about information privacy.

Development: AI has demonstrated great potential in optimizing both clinical and educational processes. However, its operation based on probabilistic prediction is inherently prone to errors and biases. Healthcare professionals must be aware of these limitations and advocate for a transparent, responsible, and safe integration of AI, while maintaining full ethical and legal responsibility for clinical decisions. It is essential to safeguard traditional clinical competencies and prioritize the use of AI in automating low-value, repetitive tasks. In biomedical research, transparency and independent validation are crucial to ensure the reproducibility of findings. Similarly, in medical education, structured training in AI is vital to enable professionals to apply these tools safely and effectively in clinical practice.

Conclusions: Generative AI offers a transformative potential for medicine, but its adoption must be guided by rigorous ethical standards. Comprehensive training, risk mitigation, and the preservation of core clinical skills are essential pillars for its responsible implementation. This transformation must be led by the medical profession to ensure a patient-centered approach to care.

Download full-text PDF

Source
http://dx.doi.org/10.31083/RN37503DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415884PMC

Publication Analysis

Top Keywords

artificial intelligence
8
medical education
8
clinical skills
8
clinical
6
[proposal responsible
4
responsible generative
4
generative artificial
4
medical
4
intelligence medical
4
medical practice]
4

Similar Publications

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Background: The ability to access and evaluate online health information is essential for young adults to manage their physical and mental well-being. With the growing integration of the internet, mobile technology, and social media, young adults (aged 18-30 years) are increasingly turning to digital platforms for health-related content. Despite this trend, there remains a lack of systematic insights into their specific behaviors, preferences, and needs when seeking health information online.

View Article and Find Full Text PDF

Artificial intelligence (AI) is transforming many fields, including healthcare and medicine. In biomarker discovery, AI algorithms have had a profound impact, thanks to their ability to derive insights from complex high-dimensional datasets and integrate multi-modal datatypes (such as omics, electronic health records, imaging or sensor and wearable data). However, despite the proliferation of AI-powered biomarkers, significant hurdles still remain in translating them to the clinic and driving adoption, including lack of population diversity, difficulties accessing harmonised data, costly and time-consuming clinical studies, evolving AI regulatory frameworks and absence of scalable diagnostic infrastructure.

View Article and Find Full Text PDF

Purpose: To evaluate inter-grader variability in posterior vitreous detachment (PVD) classification in patients with epiretinal membrane (ERM) and macular hole (MH) on spectral-domain optical coherence tomography (SD-OCT) and identify challenges in defining a reliable ground truth for artificial intelligence (AI)-based tools.

Methods: A total of 437 horizontal SD-OCT B-scans were retrospectively selected and independently annotated by six experienced ophthalmologists adopting four categories: 'full PVD', 'partial PVD', 'no PVD', and 'ungradable'. Inter-grader agreement was assessed using pairwise Cohen's kappa scores.

View Article and Find Full Text PDF

[Ai's use in health care and informed consent].

Cuad Bioet

September 2025

Universidad de A Coruña. Facultad de Derecho, Campus de Elviña, s/n, 15071, A Coruña. 981 167000 ext. 1640

The implications of the use of artificial intelligence (AI) in many areas of human existence compels us to reflect on its ethical relevance. This paper addresses the signification of its use in healthcare for patient informed consent. To this end, it first proposes an understanding of AI, as well as the basis for informed consent.

View Article and Find Full Text PDF