The emerging roles of long non-coding RNAs in the nervous system.

Nat Rev Neurosci

School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tens, if not hundreds, of thousands of long non-coding RNAs (lncRNAs) are transcribed from mammalian genomes, especially in the brain, wherein most exhibit region-specific and/or cell-specific expression patterns. Many lncRNAs are nuclear-localized and appear to be the products of developmental enhancers, whereas others are found in the cytoplasm, including at the synapse. Here, we describe the lncRNAs that have been shown to have roles in various aspects of brain development, synaptic function, learning, behaviour and brain disorders. Our emerging understanding indicates that lncRNAs direct many, if not most, of the regulatory transactions that give rise to the structure of the brain and modulate its functions, probably through their guidance of relatively generic effector proteins. Although they hold promise as targets for therapeutic interventions, a concerted effort will be required to characterize the structures, functions, spatial distribution and interacting partners of the lncRNAs expressed in the brain, most of which have not been studied. We suggest that the lncRNAs transcribed from genomic regions associated with human neurological traits and disorders be prioritized for analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41583-025-00960-zDOI Listing

Publication Analysis

Top Keywords

long non-coding
8
non-coding rnas
8
lncrnas transcribed
8
lncrnas
6
brain
5
emerging roles
4
roles long
4
rnas nervous
4
nervous system
4
system tens
4

Similar Publications

Metabolic associated steatohepatitis (MASH) is a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by hepatocellular injury, inflammation, and fibrosis. Despite advances in understanding its pathophysiology, the molecular mechanisms driving MASH progression remain unclear. This study investigates the role of long non-coding RNA Linc01271 in MASLD/MASH pathogenesis, ant its involvement in the miR-149-3p/RAB35 axis and PI3K/AKT/mTOR signaling pathway.

View Article and Find Full Text PDF

Long non-coding ribonucleic acids (lncRNAs) form a subclass of non-coding RNAs (ncRNAs), they are quite long and as their name non-coding suggests they do not have a role in protein coding. lncRNAs are vital in all the key steps of tumorigenesis, such as epithelial-mesenchymal transition, cancer stem cells formation, invasion, migration, and formation of the tumor vasculature. lncRNAs are classified into oncogenic or anti-tumor lncRNAs based on their functions.

View Article and Find Full Text PDF

Epigenetic regulation of bladder cancer in the context of aging.

Front Pharmacol

August 2025

Stem Cell Research Center, Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China.

Bladder cancer (BC) is a disease that predominantly affects older adults, with aging playing a critical role in its onset and progression. Age-associated phenomena, including immunosenescence and chronic inflammation, form a pro-tumor milieu, while genomic instability and epigenetic drift further increase cancer risk. The review highlights the dual role of DNA methylation in BC: global hypomethylation can activate transposable elements and oncogenes, whereas focal hypermethylation silences tumor-suppressor genes like CDKN2A, especially detrimental in older tissues that rely on these genes for senescence control.

View Article and Find Full Text PDF

Objectives: To study the molecular mechanisms of LDH-loaded si-NEAT1 for regulating paclitaxel resistance and tumor-associated macrophage (TAM) polarization in breast cancer.

Methods: qRT-PCR and Western blotting were used to detect the expression of lncRNA NEAT1, miR-133b, and PD-L1 in breast cancer SKBR3 cells and paclitaxel-resistant SKBR3 cells (SKBR3-PR). The effects of transfection with si-NEAT1 and miR-133b mimics on MRP, MCRP and PD-L1 expressions and cell proliferation, migration and apoptosis were investigated using qRT-PCR, Western blotting, scratch and Transwell assays, and flow cytometry.

View Article and Find Full Text PDF