Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Five-fold twinned (FFT) noble metal nanocrystals have attracted considerable interest in nanoscience due to their unique structures. This review gives a comprehensive analysis on four common types of FFT noble metal NCs (Au, Ag, Pd, and Pt) synthesized in solution, covering both monometallic structures (e.g., nanodecahedra, nanorods, nanowires, nanobipyramids, and their derivatives) and multimetallic heterostructures, with a brief discussion on FFT Cu nanowires and Rh nanodecahedra. We start with a clear overview of their structural properties, thermodynamic and kinetic stability, and twinning behavior, which is followed by a detailed discussion of key synthetic methods and growth mechanisms driving their development. Next, we provide a summary of their applications. Finally, the review also includes personal insights and identifies future challenges, suggesting potential research directions in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2025.103650DOI Listing

Publication Analysis

Top Keywords

noble metal
12
metal nanocrystals
8
fft noble
8
decahedron-derived five-fold
4
five-fold twin
4
twin noble
4
nanocrystals solution-phase
4
solution-phase synthesis
4
synthesis growth
4
growth mechanism
4

Similar Publications

Silicon carbide (SiC) membranes combine exceptional chemical, thermal, and mechanical stability but suffer from surface inertness that precludes functionalization. Conversely, MOFs offer unmatched molecular selectivity but are typically powders, severely limiting their practical use. To address this, we develop a generalizable route to fabricate ultrastable MOF@SiC membranes via sequential oxidation and acidification, creating abundant Si-OH sites on SiC surfaces that covalently bond with Zr-MOF crystals; the bonding mechanism between MOFs and substrates has been extensively studied.

View Article and Find Full Text PDF

Lanthanum-Induced Gradient Fields in Asymmetric Heterointerface Catalysts for Enhanced Oxygen Electrocatalysis.

Adv Mater

September 2025

KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.

Metal-nitrogen-carbon (M-N-C) catalysts display considerable potential as cost-effective alternatives to noble metals in oxygen electrocatalysis. However, uncontrolled atomic migration and random structural rearrangement during pyrolysis often lead to disordered coordination environments and sparse active sites, fundamentally limiting their intrinsic catalytic activities and long-term durability. Herein, a novel strategy is reported for use in directionally regulating atomic migration pathways via the incorporation of a foreign metal (La).

View Article and Find Full Text PDF

Oxophilic Sites Mediated Dynamic Oxygen Replenishment to Stabilize Lattice Oxygen Catalysis in Acidic Water Oxidation.

J Am Chem Soc

September 2025

Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing 211189, China.

Developing efficient and durable catalysts for the oxygen evolution reaction (OER) in acidic media is essential for advancing proton exchange membrane water electrolysis (PEMWE). However, catalyst instability caused by lattice oxygen (O) depletion and metal dissolution remains a critical barrier. Here, we propose an oxophilic-site-mediated dynamic oxygen replenishment mechanism (DORM), in which O actively participates in O-O bond formation and is continuously refilled by water-derived species.

View Article and Find Full Text PDF

Aluminum (Al) is a cost-effective alternative to noble metals for plasmonics, particularly in the ultraviolet (UV) and visible regions. However, in the near-infrared (NIR) region, its performance is hindered by interband transitions (IBTs) at around 825 nm, leading to increased optical losses and broad resonances. Surface lattice resonances (SLRs) offer a promising solution by enhancing the plasmonic quality factor (-factor) through coherent coupling of localized surface plasmon (LSP) modes with Rayleigh anomalies.

View Article and Find Full Text PDF

Oligosaccharides are increasingly valuable for preparing noble metal (NM) nanoparticles (NPs) due to excellent biocompatibility and abundant reducing functional groups (e.g., hydroxyl, amino, and aldehyde groups).

View Article and Find Full Text PDF