Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The electronic properties of correlated insulators are governed by the strength of Coulomb interactions, enabling the control of electronic conductivity with external stimuli. This work highlights that the strength of electronic correlations in nickel oxide (NiO), a prototypical charge-transfer insulator, can be coherently reduced by tuning the intensity of an optical pulse excitation. This weakening of correlations persists for hundreds of picoseconds and exhibits a recovery time independent of photodoping density across two orders of magnitude. A broadening of the charge-transfer gap is also observed, consistent with dynamical screening. The high degree of control achieved over both the energy and temporal dynamics of electronic correlations offers a promising avenue to a full optical control of correlated systems and the Mott transition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412645PMC
http://dx.doi.org/10.1126/sciadv.adx5676DOI Listing

Publication Analysis

Top Keywords

electronic correlations
8
dynamic control
4
control electron
4
correlations
4
electron correlations
4
correlations photodoped
4
photodoped charge-transfer
4
charge-transfer insulators
4
electronic
4
insulators electronic
4

Similar Publications

Metal-organic frameworks (MOFs) are transformative platforms for heterogeneous catalysis, but distinguishing atomically dispersed metal sites from subnanometric clusters remains a major challenge. This often demands the integration of multiple characterization techniques, many of which either lack the resolving power to distinguish active sites from their surrounding environments (e.g.

View Article and Find Full Text PDF

Disordered rock-salt LiVO (DRX-LVO) anode exhibits distinctive 3D Li percolation transport networks, which offers the unique advantage for ultra-charging. However, the existing chemical lithiation preparation routes not only pose safety risks due to the use of highly reactive reagents but also inevitably result in products with poor crystallinity. Investigating the origin, impact, and strategies for crystallinity degradation is pivotal for advancing the industrialization of chemical lithiation.

View Article and Find Full Text PDF

Global phosphorus (P) resources are facing a depletion crisis, and pyrolysis of P-rich sewage sludge (SS) offers significant resource potential. Optimizing pyrolysis conditions remains key yet challenging for enhancing P retention and bioavailability. This study conducted a correlation-prediction-causation integrated framework (CPCIF) to investigate how heating temperature (HT), heating rate (HR), and retention time (RT) influence total P enrichment rate (BTPE), relative inorganic P transformation rate (BITP), and relative apatite P transformation rate (BAIP) from SS to biochar during pyrolysis.

View Article and Find Full Text PDF

Introduction: Pelvic bone sarcomas are rare, heterogeneous malignancies that present significant diagnostic and therapeutic challenges. Despite advances in imaging, surgical navigation, and multidisciplinary care, it remains unclear whether these innovations have improved outcomes across all histiotypes.

Material And Methods: We conducted a retrospective cohort study of 475 patients surgically treated for primary pelvic bone sarcomas between 2003 and 2022.

View Article and Find Full Text PDF

Liquid chromatography has advanced considerably since its introduction in the 1970s, with reversed-phase liquid chromatography (RPLC) becoming the dominant technique for separating non-volatile molecules. A key strategy for optimising separation conditions is the modelling of chromatographic retention from experimental data. Traditionally, this is achieved by fitting model parameters for each solute, resulting in individual solute models (ISMs).

View Article and Find Full Text PDF