Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The solubility product is a rigorous description of the phase boundary for salt precipitation and has also been used to qualitatively describe the condensation of biomolecules. Here we present a derivation of the solubility product showing that the solubility product is also a robust description of biomolecules phase boundaries if care is taken to account for soluble oligomers and variable composition within the dense phase. Our calculation describes equilibrium between unbound monomers, the dense phase, and an ensemble of oligomer complexes with significant finite-size contributions to their free energy. The biomolecule phase boundary very nearly resembles the power law predicted by the solubility product when plotted as a function of the monomer concentrations. However, this simple form is confounded by the presence of oligomers in the dilute phase. Accounting for the oligomer ensemble introduces complexities to the power law phase boundary including re-entrant behavior and large shifts for sto-ichiometrically matched molecules. We show that allowing variable stoichiometry in the dense phase expands the two phase region, which appears as curvature of the phase boundary on a double-logarithmic plot. Furthermore, this curvature can be used to predict variations in the dense phase composition at different points along the phase boundary.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407863PMC
http://dx.doi.org/10.1101/2025.08.27.672390DOI Listing

Publication Analysis

Top Keywords

solubility product
20
phase boundary
20
dense phase
16
phase
12
phase boundaries
8
variable stoichiometry
8
soluble oligomers
8
power law
8
solubility
5
product
5

Similar Publications

Natural products have emerged as a vital source of active ingredients in medicine, food, and cosmetics due to their unique biological activities, safety profiles, and sustainability. However, most bioactive compounds in natural products are intensely bitter, limiting their use in pharmaceuticals and foods. The bitter taste attributes vary markedly among different compound classes, predominantly due to their structural characteristics.

View Article and Find Full Text PDF

Nimodipine (NMP), a poorly water-soluble small-molecule agent, demonstrates notable therapeutic limitations in addressing cerebral vasospasm secondary to subarachnoid hemorrhage (SAH). Owing to its inherent physicochemical properties characterized by low oral bioavailability, rapid elimination half-life, and extensive first-pass metabolism, conventional formulations necessitate frequent dosing regimens to sustain therapeutic plasma concentrations. These pharmacological challenges collectively result in suboptimal patient adherence, marked plasma concentration fluctuations, and recurrent vascular irritation.

View Article and Find Full Text PDF

Immunostimulatory and Immunomodulatory Effects of Vitamin B12 Derivatives on Macrophages Through the Modulation of JNK Pathway.

Cell Biochem Biophys

September 2025

Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34003, Türkiye, Turkey.

Vitamin B12 is a vital water-soluble vitamin containing a central cobalt atom within its corrin ring structure. It exists in several derivatives, among which methylcobalamin (MeCbl) and adenosylcobalamin (AdCbl) are the biologically active forms that serve as cofactors in essential enzymatic reactions. Although the neurological and hematological consequences of vitamin B12 deficiency have been extensively studied, its role in immune regulation remains less well understood.

View Article and Find Full Text PDF

Zinc Phosphate Passivation Enables Photostable Pixelated Quantum Dot Color Conversion Layers for Display Applications.

J Phys Chem Lett

September 2025

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, P. R. China.

Quantum dots (QDs) converted to micro light-emitting diodes (LEDs) have emerged as a promising technology for next-generation display devices. However, their commercial application has been hindered by the susceptibility of QDs to photodegradation when directly exposed to an open environment. Here, we develop functional ligand zinc bis[2-(methacryloyloxy)ethyl] phosphate (Zn(BMEP)) to passivate QD surface anions through a phosphine-mediated surface reaction.

View Article and Find Full Text PDF

High-Level Soluble Expression of Recombinant Human Bone Morphogenetic Protein-2 in .

ACS Synth Biol

September 2025

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China.

Human Bone Morphogenetic Protein-2 (hBMP-2) serves as a critical regulator in bone and cartilage formation; however, its industrial application is hindered by its inherent tendency to form inclusion bodies in prokaryotic expression systems. To address this issue, we established a recombinant hBMP-2 (rhBMP-2) expression system using the pCold II plasmid and the SHuffle T7 strain. We explored several strategies to enhance the solubility of rhBMP-2, including coexpression with molecular chaperones, vesicle-mediated secretory expression, fusion expression with synthetic intrinsically disordered proteins (SynIDPs), and fusion expression with small-molecule peptide tags.

View Article and Find Full Text PDF