Molecular mechanisms of pollen aperture formation in Arabidopsis and rice.

J Exp Bot

Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pollen apertures are specialized regions on the pollen surface that receive little to no exine deposition, forming distinct structures important for pollen function. Aperture number, shape, and positions vary widely across species, resulting in diverse, species-specific patterns that make apertures fascinating from both cell-biological and evolutionary perspectives. Aperture formation requires developing pollen to establish polarity and define specific regions of the plasma membrane as aperture domains. In the decade or so since the discovery of the first aperture factor, INP1, pollen apertures have become a powerful model for investigating how cells form distinct plasma membrane domains. Recent studies in Arabidopsis and rice, two species with contrasting aperture patterns, have identified key molecular players that regulate aperture domain specification and development. In this review, we summarize these advances and discuss directions for future studies into the molecular mechanisms controlling aperture formation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/eraf397DOI Listing

Publication Analysis

Top Keywords

aperture formation
12
molecular mechanisms
8
aperture
8
arabidopsis rice
8
pollen apertures
8
plasma membrane
8
pollen
6
mechanisms pollen
4
pollen aperture
4
formation arabidopsis
4

Similar Publications

Molecular mechanisms of pollen aperture formation in Arabidopsis and rice.

J Exp Bot

September 2025

Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA.

Pollen apertures are specialized regions on the pollen surface that receive little to no exine deposition, forming distinct structures important for pollen function. Aperture number, shape, and positions vary widely across species, resulting in diverse, species-specific patterns that make apertures fascinating from both cell-biological and evolutionary perspectives. Aperture formation requires developing pollen to establish polarity and define specific regions of the plasma membrane as aperture domains.

View Article and Find Full Text PDF

In-situ imaging of chemical reactions can provide valuable insight into nanoparticle growth and structural evolution. Hard X-ray imaging is an excellent tool for this purpose, as it combines high spatial resolution with high penetration depth, allowing for realistic reaction environments. While far-field ptychography is a well-established method at synchrotron radiation sources, its near-field analog has received less attention.

View Article and Find Full Text PDF

Cadmium (Cd) stress severely hampers plant growth in forest ecosystems. Although magnesium oxide nanoparticles (MgONPs) are known to reduce Cd toxicity in numerous plant species, their detoxification mechanisms in Moso bamboo () remain unexplored. The present study investigates how MgONPs mitigate the Cd-induced phytotoxic effects in by examining morpho-physiological and cellular oxidative repair mechanisms.

View Article and Find Full Text PDF

The assembly of pyrotechnic grain demands high precision and stability in robotic arm motion control due to the small shell apertures and stringent assembly accuracy requirements. Inverse kinematics is a core technology in robotic arm motion control. This paper constructs a robotic arm inverse kinematics model by reformulating the inverse kinematics problem as a constrained optimization problem and employs a multi-strategy improved Secretary Bird Optimization Algorithm (ISBOA) to achieve high-precision solutions.

View Article and Find Full Text PDF

To elucidate the adaptation mechanisms of Polygonum viviparum (an alpine forage grass and medicinal plant), the adaptive variation and plasticity in P. viviparum leaves along three altitudes (2300, 3200, and 3900 m) were investigated. The results showed that the stomata density, carotenoid/chlorophyll ratios, and de-epoxidation state of xanthophyll cycle pool significantly increased with increasing altitude, whereas the stomatal aperture length and total chlorophyll content decreased.

View Article and Find Full Text PDF