Toxic Effects of Vanillic Acid and Sinapic Acid on .

Biology (Basel)

College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The tolerance of the fall armyworm () to plant-derived secondary compounds gradually increases with instars. Therefore, even if plant-based additives are applied at early stages, such as the second or third instar, they may have a differential impact on the ecofriendly control of . In this study, larvae were exposed to vanillic acid or sinapic acid at the second and third instar, and physiological and growth parameters were measured. The results showed that the effects of vanillic acid treatment on were similar at the different instars. They can significantly affect the larval carboxylesterase, glutathione S-transferase, and mixed-function oxidase activities. By reducing larval food intake, food conversion, and utilization efficiency while increasing the food consumption rate, it inhibits weight accumulation. This leads to a significant extension of the development of both the larval and pupal stages, and the adult longevity was reduced. Treatment with sinapic acid at the second instar extended the negative effects on the pupal duration of when compared to treatment at the third instar, but did not affect adult longevity. Therefore, vanillic acid treatment at the second or third instar stage, can play an important role in the ecofriendly control process of . The results of this study are of great significance for integrated pest management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383644PMC
http://dx.doi.org/10.3390/biology14080979DOI Listing

Publication Analysis

Top Keywords

vanillic acid
16
third instar
16
sinapic acid
12
second third
12
effects vanillic
8
acid sinapic
8
ecofriendly control
8
acid second
8
acid treatment
8
adult longevity
8

Similar Publications

Mechanistic studies have been suggested that toxic effects of bleomycin are generally attributed to formation of free radicals, mitochondria damages, oxidative stress and inflammation. For this purpose, we explored the direct exposure of bleomycin and protective effects of the betanin and vanillic acid separately against its possible toxicity in rat lung isolated mitochondria. Various mitochondrial toxicity parameters were evaluated including; succinate dehydrogenases (SDH) activity, reactive oxygen species (ROS) formation, mitochondrial swelling, mitochondrial membrane potential (MMP) collapse, malondialdehyde (MDA) and glutathione disulfide (GSSG) levels.

View Article and Find Full Text PDF

Molecular-level insights into directional condensation mechanism of phenolic acids during humic substance formation.

Bioresour Technol

September 2025

Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China. Electronic address:

The regulation of humic substance formation during aerobic fermentation of organic solid waste has gradually become a research hotspot in related fields. The metabolic byproducts of lignocellulose have the potential to act as precursors for the synthesis of humic substances. This study, grounded in a robust framework of metabolic intermediate indicators, selected representative pure phenolic acid intermediates to conduct condensation experiments.

View Article and Find Full Text PDF

The tolerance of the fall armyworm () to plant-derived secondary compounds gradually increases with instars. Therefore, even if plant-based additives are applied at early stages, such as the second or third instar, they may have a differential impact on the ecofriendly control of . In this study, larvae were exposed to vanillic acid or sinapic acid at the second and third instar, and physiological and growth parameters were measured.

View Article and Find Full Text PDF

Phenolic acid reduction in rhizosphere via organic fertilization.

Plant Signal Behav

December 2025

Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou, China.

is a valuable traditional Chinese medicinal plant that is prone to germplasm degradation during long-term continuous monoculture. Allelopathic autotoxicity, which is mediated primarily by phenolic acids, is considered a major factor contributing to this degradation. To reveal the accumulation patterns of phenolic acids in the rhizospheric soil of under continuous monoculture, five phenolic acids (-hydroxybenzoic acid, vanillic acid, syringic acid, -coumaric acid, and ferulic acid) in the rhizospheric soil of across 1-5 y, and various fertilizer regimes (chemical fertilizer, chemical fertilizer + organic fertilizer, and organic fertilizer) were determined to assess their accumulation characteristics, along with soil fertility parameters.

View Article and Find Full Text PDF