Activation Energy of Organic Matter Decomposition in Soil and Consequences of Global Warming.

Glob Chang Biol

Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Gottingen, Gottingen, Germany.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The activation energy (E) is the minimum energy necessary for (bio)chemical reactions acting as an energy barrier and defining reaction rates, for example, organic matter transformations in soil. Based on the E database of (i) oxidative and hydrolytic enzyme activities, (ii) organic matter mineralization and CO production, (iii) heat release during soil incubation, as well as (iv) thermal oxidation of soil organic matter (SOM), we assess the E of SOM transformation processes. After a short description of the four approaches to assess these E values-all based on the Arrhenius equation-we present the E of chemical oxidation (79 kJ mol, based on thermal oxidation), microbial mineralization (67 kJ mol, CO production), microbial decomposition (40 kJ mol, heat release), and enzyme-catalyzed hydrolysis of polymers and cleavage of mineral ions of nutrients (33 kJ mol, enzyme driven reactions) from SOM. The catalyzing effects of hydrolytic and oxidative enzymes reduce E of SOM decomposition by more than twice that of its chemical oxidation. The E of enzymatic cleavage of mineral ions of N, P, and S from their organic compounds is 9 kJ mol lower (corresponding to 40-fold faster reactions) than the hydrolysis of N-, P-, and S-free organic polymers. In soil, where organic compounds are physically protected and enzymes are partly deactivated, microbial mineralization is ~140-fold faster compared to its pure chemical oxidation. Because processes with higher E are more sensitive to temperature increase, global warming will accelerate the decomposition of stable organic compounds and boost the C cycle much stronger than the cycling of nutrients: N, P, and S. Consequently, the stoichiometry of microbially utilized compounds in warmer conditions will shift toward organic pools with higher C/N ratios. This will decouple the cycling of C and nutrients: N, P, and S. Overall, the E of (bio)chemical transformations of organic matter in soil enables to assess process rates and the inherent stability of SOM pools, as well as their responses to global warming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12410053PMC
http://dx.doi.org/10.1111/gcb.70472DOI Listing

Publication Analysis

Top Keywords

organic matter
20
global warming
12
chemical oxidation
12
organic compounds
12
organic
10
activation energy
8
heat release
8
thermal oxidation
8
soil organic
8
microbial mineralization
8

Similar Publications

Several micro- and nanoplastic particle (MNP) traits, like polymer type, size, and shape, have been shown to influence MNP toxicity. However, the direction and strength of these moderating effects are often unclear, and generalizations from single studies are challenging to establish. Meta-analyses increase generalizability and derive more accurate and precise effect size estimates by combining measurements from published studies.

View Article and Find Full Text PDF

LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.

View Article and Find Full Text PDF

Introduction: Peatlands store up to a third of global soil carbon, and in high latitudes their litter inputs are increasing and changing in composition under climate change. Although litter significantly influences peatland carbon and nutrient dynamics by changing the overall lability of peatland organic matter, the physicochemical mechanisms of this impact-and thus its full scope-remain poorly understood.

Methods: We applied multimodal metabolomics (UPLC-HRMS, H NMR) paired with C Stable Isotope-Assisted Metabolomics (SIAM) to track litter carbon and its potential priming effects on both existing soil organic matter and carbon gas emissions.

View Article and Find Full Text PDF

Metagenomic analysis reveals genetic coupling between TonB-dependent transporters and extracellular enzymes in coastal bacterial communities.

Mar Life Sci Technol

August 2025

State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.

Unlabelled: Marine heterotrophic prokaryotes initially release extracellular enzymes to cleave large organic molecules and then take up ambient substrates via transporters. Given the direct influence of extracellular enzymes on nutrient availability, understanding their diversity and dynamics is crucial in comprehending microbial interactions and organic matter cycling in aquatic ecosystems. In this study, metagenomics was employed to investigate the functional diversity and dynamics of extracellular enzymes and transporters in coastal waters over a 22-day period.

View Article and Find Full Text PDF

Bismuth ferrite (BiFeO), a perovskite oxide with both ferroelectric and antiferromagnetic properties, has emerged as a promising material for environmental cleanup due to its piezo-photocatalytic activity. The material's ability to degrade organic pollutants, such as azo dyes, under both light irradiation and mechanical stress (ultrasonic waves) offers a dual-action mechanism for efficient wastewater treatment. In this work, we explore the synthesis of BiFeO nanoparticles a simple sol-gel method, followed by characterization of their structural, magnetic, and photocatalytic properties.

View Article and Find Full Text PDF