Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: This study aims to develop biocompatible magnetic nanoparticles (MNPs) functionalized with tryptophan (Trp) and isatin (Isa), two biologically active molecules with known blood-brain barrier permeability and anticancer activity. The primary objective was to evaluate the potential of these functionalized MNPs for glioblastoma therapy.

Methods: Trp and Isa were conjugated onto MNPs, and the resulting nanomaterials were characterized using SEM-EDS, FTIR, XPS, and DLS. The U-87 human glioblastoma cell line was used to investigate cellular uptake, cytotoxicity (MTT assay), and radiosensitizing effects. Additional molecular insights were obtained through STRING-based network analysis.

Results: The synthesized MNPs exhibited spherical morphology with a uniform size of approximately 100-110 nm. No significant cytotoxicity was observed at concentrations up to 10 µg/mL under standard culture conditions. However, a 70% reduction in cell viability was achieved following radiotherapy when cells were pretreated with Trp-Isa functionalized MNPs. STRING analysis revealed that Trp and Isa are involved in molecular pathways associated with glioblastoma.

Conclusion: These findings suggest that Trp and Isa functionalized MNPs hold promise as a targeted and radiosensitizing nanoplatform for glioblastoma treatment. The approach also highlights broader potential for such engineered nanoparticles in the field of nanomedicine.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17435889.2025.2555798DOI Listing

Publication Analysis

Top Keywords

functionalized mnps
12
trp isa
12
magnetic nanoparticles
8
mnps
6
affinity-driven functionalization
4
functionalization magnetic
4
nanoparticles tryptophan-isatin
4
tryptophan-isatin potential
4
potential bio-applications
4
bio-applications aims
4

Similar Publications

Steroid-refractory gut acute graft-versus-host disease (SR-Gut-aGVHD) is the major cause of nonrelapse death after allogeneic hematopoietic cell transplantation. High numbers of donor-type IL-22+ T cells, IL-22-dependent dysbiosis, and loss of antiinflammatory CX3CR1hi mononuclear phagocytes (MNPs) play critical roles in SR-Gut-aGVHD pathogenesis. CEACAM1 on intestinal epithelial cells (IECs) is proposed to regulate bacterial translocation and subsequent immune responses in the intestine.

View Article and Find Full Text PDF

Mycoplasma pneumonia, a primary aetiological agent of atypical pneumonia, necessitates the implementation of rapid point-of-care diagnostics. Lateral flow immunoassays (LFIAs) hold promise for point-of-care testing (POCT), yet their sensitivity levels are frequently constrained by probe affinity and matrix interference. We introduce an orientational labelling strategy that employs magnetic nanoparticles (MNPs) functionalized with staphylococcal protein A (SPA) to simultaneously enhance antibody orientation and facilitate magnetic enrichment.

View Article and Find Full Text PDF

An electrochemical biosensor for detection of copper(II) based on FeO@Au magnetic nanoparticles and Cu-dependent DNAzyme assisted nicking endonuclease signal amplification.

Analyst

September 2025

Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.

Copper ions are essential elements in the human body and participate in various physiological activities in the bodies of organisms. Herein, an ultrasensitive electrochemical biosensor was developed for detection of copper ions (Cu) based on FeO@Au magnetic nanoparticles (FeO@Au MNPs) and a Cu-dependent DNAzyme assisted nicking endonuclease signal amplification (NESA) strategy. dsDNA is formed by a hybridization reaction between DNA S2 and S1 immobilized on the surface of FeO@Au MNPs.

View Article and Find Full Text PDF

Microplastics and nanoplastics (MNPs) are common pollutants that engage with proteins, lipids, nucleic acids, and other biomolecules, damaging cell structure. This review goes beyond simply listing where MNPs are found to explore how they cause harm, detailing mechanisms such as oxidative stress, endocrine disruption, genotoxicity, protein misfolding, lipid membrane destabilization, and epigenetic changes. Propose an integrated mechanistic hypothesis connecting these processes via oxidative epigenetic feedback loops, size-dependent organelle targeting, and pollutant corona effects, with potential implications for cellular aging and transgenerational outcomes.

View Article and Find Full Text PDF

Metal nanoparticles (MNPs) have emerged as vital components in nanotechnology due to their unique ability to concentrate light at the nanoscale. This property makes them especially valuable in biosensing applications, where high sensitivity is essential. At the same time, cellulose-based materials like paper offer an affordable, widely available, and versatile platform, making them ideal for the development of paper-based microfluidic analytical devices (μPADs).

View Article and Find Full Text PDF