98%
921
2 minutes
20
The defence systems bacteria use to protect themselves from their viruses are mechanistically and genetically diverse. Yet the ecological conditions that predict when defences are selected for remain unclear, as substantial variation in defence prevalence has been reported. Experimental work in simple communities suggests ecological factors can determine when specific defence systems are most beneficial, but applying these findings to complex communities has been challenging. Here, we use a comprehensive and environmentally balanced collection of metagenomes to survey the defence landscape across complex microbial communities. We also assess the association between the viral community and the prevalence of defence systems. We identify strong environmental effects in predicting overall defence abundance, with animal-host-associated environments and hot environments harbouring more defences overall. We also find a positive correlation between the density and diversity of viruses in the community and the abundance of defence systems. This study provides insights into the ecological factors that influence the composition and distribution of bacterial defence systems in complex microbial environments and outlines future directions for the study of defence-system ecology.This article is part of the discussion meeting issue 'The ecology and evolution of bacterial immune systems'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409356 | PMC |
http://dx.doi.org/10.1098/rstb.2024.0069 | DOI Listing |
Int Urol Nephrol
September 2025
Department of Urology, Brigham and Women's Hospital, Harvard Medical School, 45 Francis St, ASB II-3, Boston, MA, 02115, USA.
Background: With the advancement of MR-based imaging, prostate cancer ablative therapies have seen increased interest to reduce complications of prostate cancer treatment. Although less invasive, they do carry procedural risks, including rectal injury. To date, the medicolegal aspects of ablative therapy remain underexplored.
View Article and Find Full Text PDFNat Microbiol
September 2025
Division of Computational Pathology, Brigham and Women's Hospital, Boston, MA, USA.
Although dynamical systems models are a powerful tool for analysing microbial ecosystems, challenges in learning these models from complex microbiome datasets and interpreting their outputs limit use. We introduce the Microbial Dynamical Systems Inference Engine 2 (MDSINE2), a Bayesian method that learns compact and interpretable ecosystems-scale dynamical systems models from microbiome timeseries data. Microbial dynamics are modelled as stochastic processes driven by interaction modules, or groups of microbes with similar interaction structure and responses to perturbations, and additionally, noise characteristics of data are modelled.
View Article and Find Full Text PDFArch Toxicol
September 2025
Norwegian Scientific Committee for Food and Environment, Norwegian Institute of Public Health, Oslo, Norway.
The transition from traditional animal-based approaches and assessments to New Approach Methodologies (NAMs) marks a scientific revolution in regulatory toxicology, with the potential of enhancing human and environmental protection. However, implementing the effective use of NAMs in regulatory toxicology has proven to be challenging, and so far, efforts to facilitate this change frequently focus on singular technical, psychological or economic inhibitors. This article takes a system-thinking approach to these challenges, a holistic framework for describing interactive relationships between the components of a system of interest.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, 90033, California, USA.
J R Soc Interface
September 2025
Department of Bioengineering, Imperial College London, London, UK.
Insects and plants have been locked in an evolutionary arms race spanning 350 million years. Insects evolved specialized tools to cut into plant tissue, and plants, to counter these attacks, developed diverse defence strategies. Much previous worked has focused on chemical defences.
View Article and Find Full Text PDF