Capturing the native structure of membrane proteins using vesicles.

Proc Natl Acad Sci U S A

Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Membrane proteins play crucial roles in numerous biological processes and are important drug targets. However, structural studies of membrane proteins often rely on solubilization with detergents, which may not accurately reflect their native states in a cellular context. Additionally, identifying suitable detergents for individual membrane proteins can be a detailed and time-consuming process. Here, we developed a vesicle-based method that preserves the native lipid environment for subsequent structural and functional studies. Using the bacterial multidrug efflux transporter AcrB as an example, we isolated AcrB-containing vesicles and determined its cryo-EM structure with all protomers in a loose (L) state at 3.88 Å by incorporating our micrograph-based sorting strategy. Notably, compared to the L-state AcrB in liposomes and nanoparticles, the exterior transmembrane helices (TMs) in our map exhibited superior quality, featuring a continuous and clear representation of lα, which is positioned horizontally within the lipid bilayer. We further expanded our method by identifying endogenous membrane proteins, including F-ATPase and respiratory complexes, in vesicles generated using mitochondria from pig hearts. The high-resolution structure of respiratory complex III in vesicles revealed a shared subunit nine between two monomers. Briefly, our method presents a promising and straightforward approach for studying the structure and function of membrane proteins in their native environment, eliminating the need for detergent screening and protein purification.

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2423407122DOI Listing

Publication Analysis

Top Keywords

membrane proteins
24
membrane
6
proteins
6
capturing native
4
structure
4
native structure
4
structure membrane
4
vesicles
4
proteins vesicles
4
vesicles membrane
4

Similar Publications

S-nitrosylation of pVHL regulates β adrenergic receptor function.

Proc Natl Acad Sci U S A

September 2025

Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106.

The β-adrenergic receptor (βAR), a prototype G protein-coupled receptor, controls cardiopulmonary function underpinning O delivery. Abundance of the βAR is canonically regulated by G protein-coupled receptor kinases and β-arrestins, but neither controls constitutive receptor levels, which are dependent on ambient O. Basal βAR expression is instead regulated by the prolyl hydroxylase/pVHL-E3 ubiquitin ligase system, explaining O responsivity.

View Article and Find Full Text PDF

Importance: It is unclear whether the duration of amyloid-β (Aβ) pathology is associated with neurodegeneration and whether this depends on the presence of tau.

Objective: To examine the association of longitudinal atrophy with Aβ positron emission tomography (PET)-positivity (Aβ+) and the estimated duration of Aβ+ (Aβ+ duration), controlling for tau-positivity.

Design, Setting, And Participants: Data for this longitudinal cohort study were drawn from the Wisconsin Registry for Alzheimer Prevention and the Wisconsin Alzheimer Disease Research Center Clinical Core Study.

View Article and Find Full Text PDF

Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.

View Article and Find Full Text PDF

Anaerobic bacteria cause a wide range of infections, varying from mild to severe, whether localized, implant-associated, or invasive, often leading to high morbidity and mortality. These infections are challenging to manage due to antimicrobial resistance against common antibiotics such as carbapenems and nitroimidazoles. The empirical use of antibiotics has contributed to the emergence of resistant organisms, making the identification and development of new antibiotics increasingly difficult.

View Article and Find Full Text PDF

Cutibacterium acnes (C. acnes, formerly classified as Propionibacterium acnes) is a Gram-positive bacterium that contributes to the development of acne vulgaris, resulting in inflammation and pustule formation on the skin. In this study, we developed and synthesized a series of antimicrobial peptides (AMPs) that are derived from the skin secretion of Rana chensinensis.

View Article and Find Full Text PDF