Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding how bone adapts to external forces is fundamental for exploring potential biomechanical interventions against skeletal diseases. This can be studied preclinically, combining in vivo experiments in rodents and in silico mechanoregulation models. While the in vivo tibial loading model is widely used to study bone adaptation, the common assumption of purely axial loading may be a simplification. This study quantifies the effect of the loading direction on the strain energy density (SED) distribution in the mouse tibia, a commonly used input for mechanoregulated bone remodelling models. To achieve this, validated micro-finite element (micro-FE) models were used to test the differences in local SED when the bone was loaded along different loading directions. In vivo micro-computed tomography (micro-CT) images were acquired from the tibiae of eleven ovariectomised mice at 18 weeks old before intervention and at 20 weeks old, after six mice underwent external mechanical loading. Micro-CT-based micro-FE models were generated for each tibia at both time points and loaded with a unit load in each Cartesian direction independently. The results from these unit load models were linearly combined to simulate various loading directions, defined by angles θ (inferior-superior) and ϕ (anterior-posterior). The results revealed a high sensitivity of the mouse tibia to the loading direction across both groups and time points. Several loading directions (e.g., θ = 10°, ϕ = 205-210°) resulted in lower medians of the top 5% SED values compared to those obtained for the nominal axial case (θ = 0°, ϕ = 0°). Conversely, higher values were observed for other directions (e.g., θ = 30°, ϕ = 35-50°). These findings emphasise the importance of considering the loading direction in experimental and computational bone adaptation studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10237-025-02011-zDOI Listing

Publication Analysis

Top Keywords

loading direction
16
mouse tibia
12
loading directions
12
loading
10
strain energy
8
energy density
8
distribution mouse
8
bone adaptation
8
micro-fe models
8
time points
8

Similar Publications

Eplet mismatch analysis in kidney transplantation: from concept to clinical practice.

Clin Transplant Res

September 2025

Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.

Eplet mismatch analysis offers a refined approach to assessing donor-recipient compatibility in kidney transplantation, surpassing conventional antigen-level human leukocyte antigen (HLA) matching in predicting immunologic outcomes. By identifying polymorphic amino acid residues on HLA molecules recognized by B cell receptors, this method quantifies immunologic risk. Clinical studies demonstrate that high eplet mismatch loads, particularly at HLA-DQ, are strongly associated with donor-specific antibody development, antibody-mediated rejection, and reduced graft survival.

View Article and Find Full Text PDF

Replication of cellular chromosomes requires a primase to generate short RNA primers to initiate genomic replication. While bacterial and archaeal primase generate short RNA primers, the eukaryotic primase, Polα-primase, contains both RNA primase and DNA polymerase (Pol) subunits that function together to form a >20 base hybrid RNA-DNA primer. Interestingly, the DNA Pol1 subunit of Polα lacks a 3'-5' proofreading exonuclease, contrary to the high-fidelity normally associated with DNA replication.

View Article and Find Full Text PDF

With the intensification of population aging, sarcopenia in older adults has become a significant public health issue affecting quality of life. Sarcopenia is a progressive and systemic skeletal muscle disorder characterized by reduced muscle mass, decreased muscle strength, and diminished physical function. Although conventional exercise interventions have shown some efficacy in managing sarcopenia, their effects are limited and often insufficient to effectively halt disease progression.

View Article and Find Full Text PDF

A directional self-priming continuous-driven compartmentalized microfluidic chip for multiplexed pathogen detection.

Analyst

September 2025

Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.

Rapid and efficient screening of foodborne pathogens is crucial for preventing bacterial spread and food poisoning. However, developing a multi-detection method that is easy to operate, offers good stability, and achieves high efficiency remains an enormous challenge. Existing multiplexed nucleic acid detection methods suffer from complex designs, leading to complicated operations, and non-robust sample introduction, causing primer/probe crosstalk and false-positive results.

View Article and Find Full Text PDF

Aim: To summarize the literature on quantitative measures of physical demands in eldercare, with attention to differences between temporary and permanent workers, and to identify gaps to guide future physiological research.

Methods: We searched Scopus, Web of Science, and PubMed for English and Swedish peer-reviewed studies on physical demands in eldercare. Risk of bias was assessed, and descriptive data extracted.

View Article and Find Full Text PDF