Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Deep progressive learning reconstruction (DPR) is a novel deep learning-based algorithm for PET imaging, yet its impact on quantitative metrics and radiomic feature stability is not fully characterized. This preliminary study systematically evaluated DPR against conventional ordered-subset expectation maximization (OSEM) in non-small cell lung cancer (NSCLC) PET imaging. In this retrospective study of 24 NSCLC patients, PET data were reconstructed using OSEM and three DPR strength levels. We compared standardized uptake values (SUV), contrast-to-noise ratio (CNR), and background noise. As a secondary objective, the stability of 93 radiomic features was quantified using an intra-patient coefficient of variation (COV) across all four reconstruction methods. DPR significantly increased SUV, particularly in smaller tumors, but this came at the expense of image quality, with only the lowest DPR strength improving CNR. The stability analysis revealed a stark stratification of radiomic features. While 31 features (33.3%) were robust against algorithmic changes (median COV ≤ 10%), a larger group of 38 features (40.9%), including the commonly used glcm_Contrast, proved highly unstable. In conclusion, DPR presents a critical trade-off between enhanced SUV quantification and image quality, requiring careful parameter optimization. Furthermore, our findings demonstrate that the stability of radiomic features is highly algorithm-dependent. The reliable application of advanced reconstruction techniques like DPR in quantitative and radiomic pipelines is therefore contingent upon a rigorous, evidence-based selection of features verified to be robust.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10278-025-01654-9DOI Listing

Publication Analysis

Top Keywords

radiomic features
12
radiomic feature
8
feature stability
8
deep progressive
8
progressive learning
8
learning reconstruction
8
nsclc pet
8
pet imaging
8
dpr strength
8
stability radiomic
8

Similar Publications

Purpose: To build computed tomography (CT)-based radiomics models, with independent external validation, to predict recurrence and disease-specific mortality in patients with colorectal liver metastases (CRLM) who underwent liver resection.

Methods: 113 patients were included in this retrospective study: the internal training cohort comprised 66 patients, while the external validation cohort comprised 47. All patients underwent a CT study before surgery.

View Article and Find Full Text PDF

Non-invasive prediction of invasive lung adenocarcinoma and high-risk histopathological characteristics in resectable early-stage adenocarcinoma by [18F]FDG PET/CT radiomics-based machine learning models: a prospective cohort Study.

Int J Surg

September 2025

Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China

Background: Precise preoperative discrimination of invasive lung adenocarcinoma (IA) from preinvasive lesions (adenocarcinoma in situ [AIS]/minimally invasive adenocarcinoma [MIA]) and prediction of high-risk histopathological features are critical for optimizing resection strategies in early-stage lung adenocarcinoma (LUAD).

Methods: In this multicenter study, 813 LUAD patients (tumors ≤3 cm) formed the training cohort. A total of 1,709 radiomic features were extracted from the PET/CT images.

View Article and Find Full Text PDF

Objectives: Lymph node metastasis (LNM) is an important factor affecting the stage and prognosis of patients with lung adenocarcinoma. The purpose of this study is to explore the predictive value of the stacking ensemble learning model based on F-FDG PET/CT radiomic features and clinical risk factors for LNM in lung adenocarcinoma, and elucidate the biological basis of predictive features through pathological analysis.

Methods: Ninety patients diagnosed with lung adenocarcinoma who underwent PET/CT were retrospectively analyzed and randomly divided into the training and testing sets in a 7:3 ratio.

View Article and Find Full Text PDF

Purpose: Identifying radiomics features that help predict whether glioblastoma patients are prone to developing epilepsy may contribute to an improvement of preventive treatment and a better understanding of the underlying pathophysiology.

Materials And Methods: In this retrospective study, 3-T MRI data of 451 pretreatment glioblastoma patients (mean age: 61.2 ± 11.

View Article and Find Full Text PDF

Background: Tumor deposits (TDs) are an important prognostic factor in rectal cancer. However, integrated models combining clinical, habitat radiomics, and deep learning (DL) features for preoperative TDs detection remain unexplored.

Purpose: To investigate fusion models based on MRI for preoperative TDs identification and prognosis in rectal cancer.

View Article and Find Full Text PDF