Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Iron is vital to living cells, playing a key role in cellular respiration, DNA synthesis, and various metabolic functions. Importantly, cancer cells have a higher dependency on iron compared to normal cells to support their rapid growth and survival. Due to this fact, tumors are more vulnerable to ferroptosis, an iron-dependent form of regulated cell death. Radiation therapy (RT), a standard treatment for many cancer patients, is known to induce ferroptosis. Ultra-high dose rate FLASH RT offers an improved therapeutic window by minimizing damage to normal tissues while preserving tumor control. However, the precise biological mechanisms behind the protective effects of FLASH RT on normal tissues remain unclear. In this study, we propose that variations in lipid peroxidation and ferroptosis, driven by intrinsic differences in iron levels between normal and cancerous tissues, contribute to this effect. Our findings show that FLASH RT increases lipid peroxidation and induces ferroptosis in tumor cells but does not significantly elevate lipid peroxidation and ferroptosis in normal tissues compared to conventional RT. To determine whether raising iron levels in normal tissues could abrogate the protective effects of FLASH, mice were fed a high-iron diet before RT. A high-iron diet before and after RT reversed the protective effect of FLASH, resulting in increased intestinal damage and lipid peroxidation. This suggests that baseline iron levels and iron-driven lipid peroxidation are critical factors in mediating the protective outcomes of FLASH RT. Overall, our study sheds light on the role of iron in modulating RT responses and provides new mechanistic insights into how FLASH RT influences normal and cancerous tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405469PMC
http://dx.doi.org/10.1038/s41419-025-07988-0DOI Listing

Publication Analysis

Top Keywords

lipid peroxidation
24
iron levels
16
normal tissues
16
flash
8
protective effects
8
effects flash
8
peroxidation ferroptosis
8
levels normal
8
normal cancerous
8
cancerous tissues
8

Similar Publications

Biochemical Ferrous Ions (Fe2+) Mediated Fenton Reaction: A Biological Prodigy for Curing and Developing Autoimmune Rheumatoid Arthritis and Cancer.

J Environ Pathol Toxicol Oncol

January 2025

Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences; Institute of Advanced Study in Science and Technology (IASST), An Autonomous Institute under - Department of Science & Technology (Govt. of India).

Iron is an essential trace element for the human body, but having too much or too little of it can cause various biological issues. When ferrous ions react with hydrogen peroxide, they create highly reactive and soluble hydroxyl radicals that can damage cells through oxidation. This reaction, known as the Fenton reaction, can cause lipid peroxidation and ferroptosis.

View Article and Find Full Text PDF

Ferroptosis, an iron-dependent cell death pathway driven by lipid peroxidation, has emerged as a critical pathophysiological mechanism linking cancer and inflammatory diseases. The seemingly distinct pathologies exhibit shared microenvironmental hallmarks-oxidative stress, immune dysregulation, and metabolic reprogramming-that converge on ferroptosis regulation. This review synthesizes how ferroptosis operates at the intersection of these diseases, acting as both a tumor-suppressive mechanism and a driver of inflammatory tissue damage.

View Article and Find Full Text PDF

Background: Ischemic stroke (IS), the leading stroke subtype (∼87%), arises from vascular occlusions, triggering brain necrosis through ischemia-reperfusion injury. Ferroptosis, an iron-driven cell death via Fe-mediated lipid peroxidation, is implicated in IS pathology. This study demonstrates that enoyl-coA hydrolase 1 (ECH1) may serve as a peripheral biomarker and therapeutic target for IS based on ferroptosis signaling.

View Article and Find Full Text PDF

AURKA Suppresses Ferroptosis via the KEAP1/NRF2/HO‑1 Axis in EGFR-Mutant Lung Adenocarcinoma.

Front Biosci (Landmark Ed)

August 2025

Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107 Shenzhen, Guangdong, China.

Background: Adenocarcinoma of Lung (LUAD) remains a leading cause of cancer-related deaths across the globe, and patients harboring epidermal growth factor receptor (EGFR) mutations frequently develop resistance to targeted therapies. While aurora kinase A (AURKA) has been implicated in tumorigenesis, its involvement in regulating ferroptosis via the kelch-like ECH-associated protein 1 (KEAP1)/NF-E2-related factor 2 (NRF2)/heme oxygenase 1 (HO‑1) signaling axis in EGFR-mutant LUAD remains poorly understood.

Methods: We analyzed RNA-seq and clinical data from 594 LUAD samples from The Cancer Genome Atlas (TCGA) to explore associations between AURKA expression, EGFR mutation status, and immune cell infiltration.

View Article and Find Full Text PDF

Tuberculosis, caused by , persists as a significant worldwide health issue, resulting in millions of infections and fatalities each year. Treatment predominantly depends on first-line antibiotics, including Isoniazid (INH) and Rifampicin (RIF). Nevertheless, extended use of these medications is linked to considerable adverse effects, leading to various organ toxicities, especially hepatotoxicity and nephrotoxicity.

View Article and Find Full Text PDF