In-situ capture and upgrading of carbonate and aromatic units during PC depolymerization: from environmental crisis to circular opportunity.

Sci Bull (Beijing)

State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, Hangzhou 310058, China; Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2025.08.028DOI Listing

Publication Analysis

Top Keywords

in-situ capture
4
capture upgrading
4
upgrading carbonate
4
carbonate aromatic
4
aromatic units
4
units depolymerization
4
depolymerization environmental
4
environmental crisis
4
crisis circular
4
circular opportunity
4

Similar Publications

Bioremediation offers a sustainable strategy for mitigating heavy metal contamination in soil, but is often constrained by slow removal kinetics, limited uptake efficiency, and high implementation costs. This study investigates dried mycelium membranes, rich in surface-bound proteins and high surface area, as a promising biosorbent for in situ Pb(II) remediation in urban soils. Untreated mycelium membranes buried in soil achieved Pb(II) removal efficiencies of ∼70 % and ∼40 % at initial lead soil concentrations of 100 mg/kg and 1500 mg/kg, respectively, within eight days.

View Article and Find Full Text PDF

Small-scale in situ Hi-C protocol for early embryos to resolve the three-dimensional genome structure.

STAR Protoc

September 2025

College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China. Electronic address:

High-throughput chromosome conformation capture (Hi-C) provides genome-wide insights into chromatin interactions within the three-dimensional structure of the nucleus, making it a powerful tool for studying genome architecture. Here, we provide a modified in situ Hi-C protocol for small cell numbers, utilizing 50-100 embryonic cells at the 8-cell stage to investigate chromatin organization during bovine early embryonic development. This protocol overcomes the challenges of limited sample availability and offers valuable insights into chromatin dynamics during bovine early embryogenesis.

View Article and Find Full Text PDF

Organic mixed ionic-electronic conducting polymers remain at the forefront of materials development for bioelectronic device applications. During electrochemical operation, structural dynamics and variations in electrostatic interactions in the polymer occur, which affect dual transport of the ions and electronic charge carriers. Such effects remain unclear due to a lack of spectroscopic methods capable of capturing these dynamics, which hinders the rational design of higher-performance polymers.

View Article and Find Full Text PDF

NO-Driven Janus Nanomotor Enhances T-Cell Infiltration by Reconstructing Tumor-Associated Blood and Lymphatic Vessels.

Adv Sci (Weinh)

September 2025

Department of Pharmaceutics, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), State Key Laboratory of Discovery and Utilization of Fun

The effectiveness of antitumor immunotherapy is limited to immune cell infiltration into solid tumors, primarily via T-cell migration through tumor blood vessels. This study introduces a multifunctional nitric oxide (NO)-driven hollow gold Janus nanomotor (HAM) designed to promote tumor blood vessel normalization and increase T-cell infiltration, thereby enhancing the immune response against tumors. It is revealed that self-generated NO facilitates the penetration of HAM into tumors and increases pericyte coverage of blood vessels, thereby enhancing intratumoral T-cell infiltration.

View Article and Find Full Text PDF

Enhanced Bendability and Viscoelastic behavior in High-quality 2H-SiC@SiO2 Nanowires.

Nanotechnology

September 2025

State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry and Chemical Engineering, Sun Yat-Sen University, No 135, XinGangXi Road, Guangzhou 510275, guangzhou, 510275, CHINA.

Silicon carbide nanowires (SiC NWs) combine the benefits of bulk SiC materials with the properties of low-dimensional nanomaterials. They are known for their excellent mechanical strength and durability, which are critical for their potential applications in high-stress environments and micro-nano functional systems. Here, the mechanical properties and deformation mechanisms of 2H-SiC NWs with rare defects in the [0001] orientation are reported.

View Article and Find Full Text PDF