Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The coronavirus disease 2019 pandemic has highlighted the critical need for thermostable vaccines to ensure equitable distribution and accessibility, particularly in regions lacking cold chain infrastructure. Here we present a thermostable, solid dose DNA vaccine (SDV) platform for subcutaneous delivery, based on a sugar-sugar alcohol-polymer formulation manufactured via lyophilization and compaction. Using luciferase-expressing plasmid as a model, we demonstrate that subcutaneous vaccination with SDV formulation of C57BL/6 mice results in efficient and durable transgene expression . stability assays confirmed that the SDV formulation maintained excellent thermostability after 30 days of storage at 4°C, 25°C, 37°C, and 42°C. We next applied the SDV platform to a Zika virus (ZIKV) NS1 DNA vaccine and immunized BALB/c mice. ZIKV-SDV vaccination elicited robust NS1-specific antibody and T cell responses, and conferred protection upon ZIKV challenge. These data establish the feasibility of lyophilized SDV DNA vaccines for needle-free thermostable delivery. By eliminating the need for reconstitution, refrigeration, and skilled administration, SDV formulation has the potential to enhance the deployment, cost effectiveness, and shelf-life of DNA vaccines in resource-limited settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12391442PMC
http://dx.doi.org/10.1016/j.omtn.2025.102628DOI Listing

Publication Analysis

Top Keywords

dna vaccines
12
sdv formulation
12
solid dose
8
dna vaccine
8
sdv platform
8
sdv
6
dna
5
thermostable
4
thermostable unit
4
unit solid
4

Similar Publications

Optimizing mucosal vaccination: Exploiting Lactobionic acid-modified chitosan for superior gene delivery systems.

Int J Biol Macromol

September 2025

CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal. Electronic a

The increasing prevalence of respiratory disorders highlights the urgent need for effective mucosal vaccines that elicit targeted immune responses at pathogen entry sites. However, the advancement of mucosal vaccines is limited by challenges in antigen delivery and overcoming mucosal immune tolerance. In this study, we developed a gene delivery platform using chitosan functionalized with lactobionic acid (LA) to enhance targeting of antigen-presenting cells and to form stable DNA polyplexes with high transfection efficiency.

View Article and Find Full Text PDF

For some of the COVID-19 vaccines, the drug substances released to market were manufactured differently than those used in clinical trials. Manufacturing nucleoside-modified mRNA (modRNA) for commercial COVID-19 vaccines relies on RNA polymerase transcription of a plasmid DNA template. Previous studies identified high levels of plasmid DNA in vials of modRNA vaccines, suggesting that the removal of residual DNA template is problematic.

View Article and Find Full Text PDF

Chitosan polyplexes for targeted gene delivery: From mechanisms to clinical applications.

Carbohydr Polym

November 2025

Department of Pharmaceutics, Parul Institute of Pharmacy, Faculty of Pharmacy, Parul University, Waghodia, Vadodara, 391760, Gujarat, India; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; Faculty of Pharmacy, Silpakorn Univers

As a diverse natural polymer called Chitosan, it created ground-breaking advancements in nucleic acid therapeutic delivery techniques for handling essential DNA and RNA delivery hurdles. The article investigates how nucleic acids form stable polyplexes with chitosan through electrostatic bonds, as well as explores their chemical and biological properties. The review explores how molecular weight, combined with the degree of deacetylation, combined with advanced functionalization strategies, help enhance delivery results.

View Article and Find Full Text PDF

Conserved and distinct expression of circular RNAs in commercially used Marek's disease vaccine viruses.

J Gen Virol

September 2025

Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, Namur, Belgium.

Circular RNAs (circRNAs) are covalently closed RNA molecules, supporting a wide diversity of functions. While aberrant circRNA expression stands as a recognized hallmark of cancer development, our attention has turned to investigating their role in viral infections, specifically (GaHV-2, Marek's disease virus) infection. In a previous study focused on the virulent GaHV-2 strain, RB-1B, we extensively catalogued circRNAs produced from virulence genes, notably from the MEQ-vIL-8 and the latency-associated transcripts (LATs) gene.

View Article and Find Full Text PDF

As monotherapy, PARP inhibitors have little cytotoxic effect in tumors without homologous recombinant repair (HRR) alterations. Supported by preclinical models, we hypothesized that the PARP inhibitor talazoparib in combination with temozolomide chemotherapy could induce DNA damage leading to cell death and tumor response in patients with metastatic castration-resistant prostate cancer (mCRPC) without HRR alterations. In this phase 1b/2 trial (NCT04019327; registration date July 11, 2019), patients with progressive mCRPC without HRR mutations who failed at least one androgen receptor signaling inhibitor were enrolled in escalating doses of intermittent talazoparib plus temozolomide to determine the maximum tolerated dose and recommended phase 2 dose (RP2D) in Phase 1b.

View Article and Find Full Text PDF