98%
921
2 minutes
20
Brain aging is a major risk for neurodegeneration, yet the underlying molecular mechanisms remain poorly understood. Here we performed an integrative proteo-transcriptomic analysis of the aging mouse brain, uncovering molecular signatures of aging through the assessment of protein aggregation, mRNA relocalization, and comparative proteomics across eight models of premature aging and neurodegeneration. We identified dynamic changes in physiological aging highlighting differences in synaptic maintenance and energy-allocation. These were linked to changes associated with fundamental protein biochemical properties such as size and net charge. Network analysis highlighted a decrease in mitochondrial complex I proteins not compensated at the mRNA level. Aggregation of 60S ribosome subunits indicated deteriorating translation efficiency and was accompanied by mitochondrial and proteasomal imbalance. The analysis of the nine models revealed key similarities and differences between physiological aging and pathology. Overall, our study provides an extensive resource on molecular aging, and offers insights into mechanisms predisposing to neurodegeneration, easily accessible at our Brain Aging and Molecular Atlas Project (BrainAging-MAP) website.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393264 | PMC |
http://dx.doi.org/10.1101/2025.08.14.669896 | DOI Listing |
J Med Microbiol
September 2025
Alberta Precision Laboratories Public Health Lab, Edmonton, Alberta, Canada.
For thousands of years, parasitic infections have represented a constant challenge to human health. Despite constant progress in science and medicine, the challenge has remained mostly unchanged over the years, partly due to the vast complexity of the host-parasite-environment relationships. Over the last century, our approaches to these challenges have evolved through considerable advances in science and technology, offering new and better solutions.
View Article and Find Full Text PDFJAMA Psychiatry
September 2025
Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville.
Importance: Behavioral variant frontotemporal dementia (bvFTD), the most common subtype of FTD, is a leading form of early-onset dementia worldwide. Accurate and timely diagnosis of bvFTD is frequently delayed due to symptoms overlapping with common psychiatric disorders, and interest has increased in identifying biomarkers that may aid in differentiating bvFTD from psychiatric disorders.
Objective: To summarize and critically review studies examining whether neurofilament light chain (NfL) in cerebrospinal fluid (CSF) or blood is a viable aid in the differential diagnosis of bvFTD vs psychiatric disorders.
Background: People with dementia who have a fall can experience both physical and psychological effects, often leading to diminished independence. Falls impose economic costs on the healthcare system. Despite elevated fall risks in dementia populations, evidence supporting effective home-based interventions remains limited.
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Gynecology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
Background: Ovarian cancer remains the most lethal gynecological cancer, with fewer than 50% of patients surviving more than five years after diagnosis. This study aimed to analyze the global epidemiological trends of ovarian cancer from 1990 to 2021 and also project its prevalence to 2050, providing insights into these evolving patterns and helping health policymakers use healthcare resources more effectively.
Methods: This study comprehensively analyzes the original data related to ovarian cancer from the GBD 2021 database, employing a variety of methods including descriptive analysis, correlation analysis, age-period-cohort (APC) analysis, decomposition analysis, predictive analysis, frontier analysis, and health inequality analysis.
Am J Cardiovasc Drugs
September 2025
Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.