98%
921
2 minutes
20
Sepsis is a life-threatening disease caused by a dysfunctional host response to infection. During sepsis, inflammation-related immunosuppression is the critical factor causing secondary infection and multiple organ dysfunction syndrome. The regulatory mechanisms underlying regulatory T-cell (Treg) differentiation and function, which significantly contribute to septic immunosuppression, require further clarification. In this study, we found that neutrophil extracellular traps (NETs) participated in the development of sepsis-induced immunosuppression by enhancing Treg differentiation and function via direct interaction with CD4+ T cells. Briefly, NETs anchored enolase 1 (ENO1) on the membrane of CD4+ T cells through its key protein myeloperoxidase (MPO) and subsequently recruited interferon-induced transmembrane protein 2 (IFITM2). IFITM2 acted as a DNA receptor that sensed NETs-DNA and activated intracellular RAS-associated protein 1B (RAP1B) and its downstream extracellular signal-regulated kinase (ERK) signaling pathway to promote Treg differentiation and function. ENO1 inhibition significantly attenuated NETs-induced Treg differentiation and alleviated sepsis in mice. Overall, we demonstrated the role of NETs in sepsis-induced immunosuppression by enhancing Treg differentiation, identified ENO1 as an anchor of NETs-MPO, and elucidated the downstream molecular mechanism by which IFITM2-RAP1B-ERK regulated Treg differentiation. These findings improve our understanding of the immunopathogenesis of sepsis and provide potential therapeutic targets for sepsis-induced immunosuppression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1172/JCI183541 | DOI Listing |
Am J Reprod Immunol
September 2025
Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha, Hunan, China.
Problem: Preeclampsia (PE) is a leading cause of perinatal maternal and fetal mortality. Clinical and pathological studies suggest that placental and decidual cell dysfunction may contribute to this condition. However, the pathogenesis of PE remains poorly understood.
View Article and Find Full Text PDFBioimpacts
August 2025
Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
Introduction: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). CD4 CD25 Tregs, which normally suppress immune responses, exhibit impaired function in MS. Treg-derived extracellular vesicles (EVs) carry immunoregulatory proteins and miRNAs that modulate T-cell activity.
View Article and Find Full Text PDFCrit Rev Immunol
September 2025
Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal,500078, Telangana State, India.
IL-2 agonists significantly modulate T cell regulation, impacting activation, proliferation, differentiation, and immune homeostasis. Interleukin-2 (IL-2) is crucial for T cell growth and function, binding to the IL-2 receptor to trigger signaling pathways that balance immune responses. IL-2 promotes the expansion of effector T cells and enhances regulatory T cells (Tregs), preventing autoimmune responses.
View Article and Find Full Text PDFMediators Inflamm
September 2025
College of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan 250002, China.
Uveitis is an inflammatory eye disease, and Longdan Xiegan Decoction (LXD) has been used to treat uveitis. However, the underlying mechanisms have not fully been addressed. The present study aimed to provide new insights into LXD ameliorating inflammatory response of experimental autoimmune uveitis (EAU) and regulating T helper (Th) cell differentiation via the interaction between microRNA (miRNA) and mRNA.
View Article and Find Full Text PDFClin Exp Immunol
September 2025
Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.
Introduction: Conventional dendritic cells (cDCs) in the gut express the vitamin A (VA)-converting enzyme retinal dehydrogenase 2 (RALDH2) and produce significant amounts of retinoic acid (RA). RA derived from gut cDCs contributes to the generation of tolerogenic responses by promoting Treg differentiation while inhibiting Th1 and Th17 cell differentiation. In this study, we investigated whether similar RA-mediated immunoregulatory mechanisms operate in the pancreas using an experimental autoimmune pancreatitis (AIP) model.
View Article and Find Full Text PDF