98%
921
2 minutes
20
Degradative autophagy supplies a source of nutrients and energy by digesting cytoplasmic components. Additionally, it eliminates toxic protein aggregates and defective organelles from cells. Exosomes are small vesicles that are released by cells into the extracellular environment and are also involved in maintenance of homeostasis by removing unwanted materials and intracellular pathogens. Nevertheless, it remains unclear how these two processes may differ or are alike in their roles in maintaining intracellular homeostasis. In this study, we found that secretory exosomes served as a quality control mechanism, maintaining intracellular RNA homeostasis by facilitating both the selective packaging of endogenous and exogenous RNA species. Conversely, autophagic degradation primarily functions to dispose of both endogenous and exogenous proteins, resulting in controlling intracellular proteostasis. The depletion of exosome secretion resulted in prolonged accumulation of exogenous RNA within the cells, whereas it had no significant effect on the accumulation of exogenous proteins. Viral infection not only induced the host autophagy response, but also impacted secretion of exosomes. Our data showed that secretory exosomes contributed to the clearing of increased intracellular microRNAs induced by enterovirus infection, thereby weakening viral replication. Furthermore, the secretory exosomes were essential for the disposal of viral RNA replicon rather than autophagic degradation, thereby facilitating host survival. Our results collectively revealed that both secretory exosome and autophagic degradation were crucial for maintaining cellular homeostasis, but that they operate through distinct mechanisms and dispose of different types of unwanted materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.70244 | DOI Listing |
Curr Stem Cell Res Ther
September 2025
Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
Introduction: Exosomes produced by mesenchymal stem cells (MSCs) have lately garnered significant attention for their capacity to enhance wound healing. Recent studies have recognized exosomes as significant secretory products from several cell types, specifically MSCs, in regulating multiple biological processes, including wound healing. This work aims to investigate the impact of exosomes derived from the bone marrow mesenchymal stem cells (BMMSCs) of NMRI animals on keratinocyte function.
View Article and Find Full Text PDFAutophagy
September 2025
Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
Chaperone-mediated autophagy (CMA), a lysosome-dependent protein degradation pathway, plays a pivotal yet poorly understood role in cellular senescence-related degenerative diseases. Our study sheds light on a novel mechanism whereby UCHL1 plays a crucial role in mitigating nucleus pulposus cell (NPC) senescence and intervertebral disc degeneration (IVDD) by activating CMA to counteract autophagy-dependent ferroptosis. Through sequencing analysis of human samples, we identified UCHL1 as a potential factor influencing disc degeneration.
View Article and Find Full Text PDFFEBS J
September 2025
Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
Degradative autophagy supplies a source of nutrients and energy by digesting cytoplasmic components. Additionally, it eliminates toxic protein aggregates and defective organelles from cells. Exosomes are small vesicles that are released by cells into the extracellular environment and are also involved in maintenance of homeostasis by removing unwanted materials and intracellular pathogens.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Federal State Budgetary Educational Institution of Higher Education, National Research Ogarev Mordovia State University, Mordovia 430005, Russia.
The low predictability of the effects of autologous platelet-rich plasma (PRP) in regenerative therapy for patients with type 1 and type 2 diabetes mellitus (DM) underscores the need for further research assessing the reparative effects of PRP based on the type of DM. The aim of this study was to evaluate the regenerative potential of PRP from young donors (30-40 years old) with DM1 and DM2 in vitro, specifically its effects on human dermal fibroblast cell culture. The in vitro effects of PRP from patients with type 1 and type 2 DM were investigated using a culture of human dermal fibroblasts (hTERT-HDFa) to evaluate metabolic activity, migration, proliferation of the cells, and their ability to release growth factors and exosomes.
View Article and Find Full Text PDFCell Death Discov
August 2025
Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
Given the heterogeneity of the tumor microenvironment (TME), neoadjuvant immunotherapy combined with chemotherapy benefits only a subset of lung adenocarcinoma (LUAD) patients, and the mechanisms of resistance remain unclear. Transfer RNA-derived small RNAs (tsRNAs) are a new class of non-coding RNAs that participate in the remodeling of the TME. Using high-throughput small RNA microarray analysis, we found elevated expression of tsRNA 3'tiRNA-AlaCGC in tumors of LUAD patients resistant to neoadjuvant therapy, and negatively correlated with the poor prognosis in LUAD patients.
View Article and Find Full Text PDF