98%
921
2 minutes
20
Metal-organic frameworks (MOFs) with well-defined crystalline structures offer ideal platforms to unravel structure-property relationships, but their low density of accessible metal sites limits catalytic activation. Efforts to generate open metal sites often compromise structural integrity, obstructing mechanistic investigation. In this study, we convert single-coordinated MOFs into dual-coordinated frameworks, enabling controlled creation of unsaturated metal sites to boost electrocatalytic performance while preserving crystal framework for structure-property study. As a proof-of-concept, we transform Zn─N single-coordinated ZIF-L into Zn─N/O dual-coordinated MOFs (B-MOFs), where strong Zn─N bonds act as structural pillars and weaker Zn─O bonds serve as removable linkers. Upon annealing at 500 °C, selective cleavage of Zn─O bonds produces defective MOFs (dB-MOFs) with abundant open Zn sites and a well-retained crystal structure. The dB-MOF grown on carbon cloth (CC) exhibits high performance in hydrazine oxidation reaction (HzOR), significantly superior to pristine B-MOF/CC. A combination of material characterizations and theoretical calculation demonstrates that the removal of Zn─O bond creates abundant electron-deficient Zn sites, which enhance the adsorption of HzOR intermediates and lower the reaction energy barriers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202515653 | DOI Listing |
Inorg Chem
September 2025
College of Chemistry and Materials Science, The key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materia
Conventional acid-catalyzed acetalization faces significant challenges in catalyst recovery and poses environmental concerns. Herein, we develop a CeO-supported Pd single-atom catalyst (Pd/CeO) that eliminates the reliance on liquid acids by creating a localized H-rich microenvironment through heterolytic H activation. X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses confirm the atomic dispersion of Pd via Pd-O-Ce coordination, while density functional theory (DFT) calculations reveal strong metal-support interactions (SMSI) that facilitate electron transfer from CeO oxygen to Pd, downshifting the Pd d-band center and optimizing H activation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, P.R. China.
Silicon carbide (SiC) membranes combine exceptional chemical, thermal, and mechanical stability but suffer from surface inertness that precludes functionalization. Conversely, MOFs offer unmatched molecular selectivity but are typically powders, severely limiting their practical use. To address this, we develop a generalizable route to fabricate ultrastable MOF@SiC membranes via sequential oxidation and acidification, creating abundant Si-OH sites on SiC surfaces that covalently bond with Zr-MOF crystals; the bonding mechanism between MOFs and substrates has been extensively studied.
View Article and Find Full Text PDFJ Cell Biol
October 2025
Cell and Systems Biology Program, Hospital for Sick Children, Toronto, Canada.
Mitochondria continually undergo fission to maintain their network and health. Nascent fission sites are marked by the ER, which facilitates actin polymerization to drive calcium flux into the mitochondrion and constrict the inner mitochondrial membrane. Septins are a major eukaryotic cytoskeleton component that forms filaments that can both directly and indirectly modulate other cytoskeleton components, including actin.
View Article and Find Full Text PDFAdv Mater
September 2025
KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
Metal-nitrogen-carbon (M-N-C) catalysts display considerable potential as cost-effective alternatives to noble metals in oxygen electrocatalysis. However, uncontrolled atomic migration and random structural rearrangement during pyrolysis often lead to disordered coordination environments and sparse active sites, fundamentally limiting their intrinsic catalytic activities and long-term durability. Herein, a novel strategy is reported for use in directionally regulating atomic migration pathways via the incorporation of a foreign metal (La).
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing 211189, China.
Developing efficient and durable catalysts for the oxygen evolution reaction (OER) in acidic media is essential for advancing proton exchange membrane water electrolysis (PEMWE). However, catalyst instability caused by lattice oxygen (O) depletion and metal dissolution remains a critical barrier. Here, we propose an oxophilic-site-mediated dynamic oxygen replenishment mechanism (DORM), in which O actively participates in O-O bond formation and is continuously refilled by water-derived species.
View Article and Find Full Text PDF