Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Species tree estimation from genes sampled from throughout the whole genome is challenging because of gene tree discordance, often caused by incomplete lineage sorting (ILS). Quartet-based summary methods for estimating species trees from a collection of gene trees are becoming popular due to their high accuracy and theoretical guarantees of robustness to arbitrarily high amounts of ILS. ASTRAL, the most widely used quartet-based method, aims to infer species trees by maximizing the number of quartets in the gene trees consistent with the species tree. An alternative approach is inferring quartets for all subsets of four species and amalgamating them into a coherent species tree. While summary methods can be sensitive to gene tree estimation error, quartet amalgamation offers an advantage by potentially bypassing gene tree estimation. However, greatly understudied is the choice of weighted quartet inference method and downstream effects on species tree estimations under realistic model conditions. In this study, we investigated a wide array of methods for generating weighted quartets and critically assessed their impact on species tree inference. Our study provides evidence that the careful generation and amalgamation of weighted quartets, as implemented in methods like wQFM, can lead to significantly more accurate trees than popular methods like ASTRAL, especially in the face of gene tree estimation errors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401674PMC
http://dx.doi.org/10.1093/gbe/evaf159DOI Listing

Publication Analysis

Top Keywords

species tree
24
tree estimation
16
gene tree
16
tree
10
species
9
weighted quartet
8
tree inference
8
summary methods
8
species trees
8
gene trees
8

Similar Publications

Genomes are composed of a mosaic of segments inherited from different ancestors, each separated by past recombination events. Consequently, genealogical relationships among multiple genomes vary spatially across different genomic regions. Genealogical variation among unlinked (uncorrelated) genomic regions is well described for either a single population (coalescent) or multiple structured populations (multispecies coalescent).

View Article and Find Full Text PDF

Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.

View Article and Find Full Text PDF

CRISPR RNP-Mediated Transgene-Free Genome Editing in Plants: Advances, Challenges and Future Directions for Tree Species.

Plant Cell Environ

September 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry

CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.

View Article and Find Full Text PDF

Erythrina velutina is a tree that thrives in the shallow rocky soils of the dry and hot Caatinga, a unique Brazilian biome. It is rich in specialized metabolites with medicinal properties. Indeed, alkaloids and flavonoids are phytochemical markers of the genus.

View Article and Find Full Text PDF

Genome-wide identification analysis of aldo-keto reductase gene family in cotton and GhAKR40 role in salt stress tolerance.

Funct Integr Genomics

September 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.

View Article and Find Full Text PDF