FoldExplorer: Fast and Accurate Protein Structure Search with Sequence-Enhanced Graph Embedding.

J Mol Biol

Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China. Electronic address:

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The advent of highly accurate protein structure prediction methods has fueled an exponential expansion of the protein structure database. Consequently, there is a rising demand for rapid and precise protein structure search. Traditional alignment-based methods are designed for precise pairwise comparisons, offering high accuracy. However, they face challenges when searching within large databases. In response to this challenge, we propose a novel deep-learning approach FoldExplorer. It leverages graph attention neural networks and protein language models to jointly encode structural and sequence information, generating embeddings tailored for protein structure search. FoldExplorer achieves competitive performance in geometric similarity search and classification tasks, outperforming recent deep learning and sequence-based methods, and approaching classical alignment tools. Significantly, FoldExplorer remains effective when searching low-confidence predicted structures. Meanwhile, FoldExplorer is particularly highly efficient when searching in large-scale databases. The accurate embedding space generated by FoldExplorer enables providing a comprehensive protein structure space view, which will provide novel cluster and boundary insights on the protein universe studies. A publicly accessible search web server is available at: http://www.csbio.sjtu.edu.cn/bioinf/FoldExplorer/.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2025.169412DOI Listing

Publication Analysis

Top Keywords

protein structure
24
structure search
12
protein
8
accurate protein
8
foldexplorer
6
structure
6
search
5
foldexplorer fast
4
fast accurate
4
search sequence-enhanced
4

Similar Publications

In the presence of chromatin bridges in cytokinesis, human cells retain actin-rich structures (actin patches) at the base of the intercellular canal to prevent chromosome breakage. Here, we show that daughter nuclei connected by chromatin bridges are under mechanical tension that requires interaction of the nuclear membrane Sun1/2-Nesprin-2 Linker of Nucleoskeleton and Cytoskeleton (LINC) complex with the actin cytoskeleton, and an intact nuclear lamina. This nuclear tension promotes accumulation of Sun1/2-Nesprin-2 proteins at the base of chromatin bridges and local enrichment of the RhoA-activator PDZ RhoGEF through PDZ-binding to cytoplasmic Nesprin-2 spectrin repeats.

View Article and Find Full Text PDF

Serine protease inhibitors (SERPINs) are involved in various physiological processes and diseases, such as inflammation, cancer metastasis, and neurodegeneration. Their role in viral infections is poorly understood, as their expression patterns during infection and the range of proteases they target have yet to be fully characterized. Here, we show widespread expression of human SERPINs in response to respiratory virus infections, both in bronchioalveolar lavages from COVID-19 patients and in polarized human airway epithelial cultures.

View Article and Find Full Text PDF

Structure, function and assembly of nuclear pore complexes.

Nat Rev Mol Cell Biol

September 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.

The defining property of eukaryotic cells is the storage of heritable genetic material in a nuclear compartment. For eukaryotic cells to carry out the myriad biochemical processes necessary for their function, macromolecules must be efficiently exchanged between the nucleus and cytoplasm. The nuclear pore complex (NPC) - which is a massive assembly of ~35 different proteins present in multiple copies totalling ~1,000 protein subunits and architecturally conserved across eukaryotes - establishes a size-selective channel for regulated bidirectional transport of folded macromolecules and macromolecular assemblies across the nuclear envelope.

View Article and Find Full Text PDF

Semaphorin 3A-mediated perineuronal nets formation incubates depressive-like behaviors in male mice via activating parvalbumin-expressing interneurons.

Mol Psychiatry

September 2025

Department of Pharmacology, School of Basic Medicine and Department of Pharmacy, Tongji Hospital, Tongji Medical College; and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. chenjg@hu

Dysfunction of parvalbumin-expressing interneurons (PV-INs) in the cerebral cortex has been implicated in major depressive disorder. Perineuronal nets (PNNs), which encapsulate PV-INs, are considered to influence the structural and functional properties of PV-INs. Semaphorin 3A (Sema3A) is a secreted protein constituent of PNNs, but the specific roles of Sema3A in modulating PV-INs during stress remain unknown.

View Article and Find Full Text PDF

A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.

View Article and Find Full Text PDF