Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Animal opsins are G protein-coupled receptors that have evolved to sense light by covalently binding a retinal chromophore via a protonated (positively charged) Schiff base. A negatively charged amino acid in the opsin, acting as a counterion, stabilizes the proton on the Schiff base, which is essential for sensitivity to visible light. In this study, we investigate the spectroscopic properties of a unique class of opsins from a reef-building coral belonging to the anthozoan-specific opsin II group (ASO-II opsins), which intriguingly lack a counterion residue at any of established sites. Our findings reveal that, unlike other known animal opsins, the protonated state of the Schiff base in visible light-sensitive ASO-II opsins is highly dependent on exogenously supplied chloride ions (Cl). By using structural modeling and quantum mechanics/molecular mechanics (QM/MM) calculations to interpret spectroscopy data, we conclude that, in the dark state, ASO-II opsins employ environmental Cl as their native counterion, while a nearby polar residue, Glu292 in its protonated neutral form, facilitates Cl binding. In contrast, Glu292 plays a crucial role in maintaining the protonation state of the Schiff base in the light-activated protein, serving as the counterion in the photoproduct. Furthermore, Glu292 is involved in G protein activation of the ASO-II opsin, suggesting that this novel counterion system coordinates multiple functional properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401545PMC
http://dx.doi.org/10.7554/eLife.105451DOI Listing

Publication Analysis

Top Keywords

schiff base
16
aso-ii opsins
12
opsins employ
8
animal opsins
8
state schiff
8
opsins
7
counterion
6
coral anthozoan-specific
4
anthozoan-specific opsins
4
employ novel
4

Similar Publications

Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.

View Article and Find Full Text PDF

Serine hydroxymethyltransferase (SHMT) is a critical enzyme in the one-carbon (1C) metabolism pathway catalyzing the reversible conversion of L-Ser into Gly and concurrent transfer of 1C unit to tetrahydrofolate (THF) to give 5,10-methylene-THF (5,10-MTHF), which is used in the downstream syntheses of biomolecules critical for cell proliferation. The cellular 1C metabolism is hijacked by many cancer types to support cancer cell proliferation, making SHMT a promising target for the design and development of novel small-molecule antimetabolite chemotherapies. To advance structure-assisted drug design, knowledge of SHMT catalysis is crucial, but can only be fully realized when the atomic details of each reaction step governed by the acid-base catalysis are elucidated by visualizing active site hydrogen atoms.

View Article and Find Full Text PDF

The synthesis of two Schiff base (SB) compounds, 3-phenyl-4-(5-nitrofuran-1-yl)methyleneamino-4,5-dihydro-1H-1,2,4-triazol-5-one (3‒PNM) and 1-acetyl-3-phenyl-4-(5-nitrofuran-1-yl)methyleneamino-4,5-dihydro-1H-1,2,4-triazol-5-one (1-APNM) was successful. The structures of 3-PNM and 1-APNM were determined using ¹H/¹C-NMR and IR spectroscopy. Absorption and fluorescence spectroscopy were used to evaluate the compounds' interactions with BSA.

View Article and Find Full Text PDF

A covalent organic polymer fluorescent probe for highly selective and sensitive UO detection in water and food samples.

Biosens Bioelectron

September 2025

Cancer Research Institute, The First Affiliated Hospital, University of South China, Hengyang, 421001, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:

A highly sensitive, selective, and simple method for detecting uranyl ions (UO) is crucial for human health and environmental safety. Amidoxime-based nanomaterials have been widely employed for UO detection, but their higher affinity for vanadium than UO limits their practical applications. Herein, a novel covalent organic polymer fluorescent probe (TT-COP) for UO detection was innovatively developed by a one-step Schiff-base condensation reaction between 3,3',5,5'-tetramethylbenzidine (TMB) and 2,4,6-triformylphloroglucinol (Tp).

View Article and Find Full Text PDF