Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Enhancing antibody affinity is a critical goal in antibody design, as it improves therapeutic efficacy, specificity, and safety while reducing dosage requirements. Traditional methods, such as single-point mutations or combinatorial mutagenesis, are limited by the impracticality of exhaustively exploring the vast mutational space. To address this challenge, we developed a novel computational pipeline that integrates evolutionary constraints, antibody-antigen-specific statistical potentials, molecular dynamics simulations, metadynamics, and a suite of deep learning models to identify affinity-enhancing mutations. Our deep learning framework includes MicroMutate, which predicts microenvironment-specific amino acid mutations, and graph-based models that evaluate postmutation antigen-antibody-binding probabilities. Using this approach, we screened 12 single-point mutant antibodies targeting the hemagglutinin of the H7N9 avian influenza virus, starting from antibodies with initial affinities in the subnanomolar range, with one showing a 4.62-fold improvement. To demonstrate the generalizability of our method, we applied it to engineer an antibody against death receptor 5 with initial affinities in the subnanomolar range, successfully identifying a mutant with a 2.07-fold increase in affinity. Our work underscores the transformative potential of integrating deep learning and computational methods for rapidly and precisely discovering affinity-enhancing mutations while preserving immunogenicity and expression. This approach offers a powerful and universal platform for advancing antibody therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400800PMC
http://dx.doi.org/10.1093/bib/bbaf445DOI Listing

Publication Analysis

Top Keywords

deep learning
16
antibody affinity
8
learning computational
8
single-point mutations
8
affinity-enhancing mutations
8
initial affinities
8
affinities subnanomolar
8
subnanomolar range
8
antibody
5
mutations
5

Similar Publications

Multi-region ultrasound-based deep learning for post-neoadjuvant therapy axillary decision support in breast cancer.

EBioMedicine

September 2025

Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China. Electronic address:

View Article and Find Full Text PDF

Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.

Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.

View Article and Find Full Text PDF

Designing Buchwald-Hartwig Reaction Graph for Yield Prediction.

J Org Chem

September 2025

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.

The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.

View Article and Find Full Text PDF

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma.

View Article and Find Full Text PDF