Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Microscopic tumor cell infiltration beyond contrast-enhancing regions influences glioblastoma prognosis but remains undetectable using conventional MRI.
Purpose: To develop and evaluate the glioblastoma infiltrating area interactive detection framework (GIAIDF), an interactive deep-learning framework that integrates diffusion tensor imaging (DTI) biomarkers for identifying microscopic infiltration within peritumoral edema.
Study Type: Retrospective.
Population: A total of 73 training patients (51.13 ± 13.87 years; 47 M/26F) and 25 internal validation patients (52.82 ± 10.76 years; 14 M/11F) from Center 1; 25 external validation patients (47.29 ± 11.39 years; 16 M/9F) from Center 2; 13 prospective biopsy patients (45.62 ± 9.28 years; 8 M/5F) from Center 1.
Field Strength/sequences: 3.0 T MRI including three-dimensional contrast-enhanced T1-weighted BRAVO sequence (repetition time = 7.8 ms, echo time = 3.0 ms, inversion time = 450 ms, slice thickness = 1 mm), three-dimensional T2-weighted fluid-attenuated inversion recovery (repetition time = 7000 ms, echo time = 120 ms, inversion time = 2000 ms, slice thickness = 1 mm), and diffusion tensor imaging (repetition time = 8500 ms, echo time = 63 ms, slice thickness = 2 mm).
Assessment: Histopathology of 25 stereotactic biopsy specimens served as the reference standard. Primary metrics included AUC, accuracy, sensitivity, and specificity. GIAIDF heatmaps were co-registered to biopsy trajectories using Ratio-FAcpcic (0.16-0.22) as interactive priors.
Statistical Tests: ROC analysis (DeLong's method) for AUC; recall, precision, and F1 score for prediction validation.
Results: GIAIDF demonstrated recall = 0.800 ± 0.060, precision = 0.915 ± 0.057, F1 = 0.852 ± 0.044 in internal validation (n = 25) and recall = 0.778 ± 0.053, precision = 0.890 ± 0.051, F1 = 0.829 ± 0.040 in external validation (n = 25). Among 13 patients undergoing stereotactic biopsy, 25 peri-ED specimens were analyzed: 18 without tumor cell infiltration and seven with infiltration, achieving AUC = 0.929 (95% CI: 0.804-1.000), sensitivity = 0.714, specificity = 0.944, and accuracy = 0.880. Infiltrated sites showed significantly higher risk scores (0.549 ± 0.194 vs. 0.205 ± 0.175 in non-infiltrated sites, p < 0.001).
Data Conclusion: This study has provided a potential tool, GIAIDF, to identify regions of GBM infiltration within areas of peri-ED based on preoperative MR images.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.70058 | DOI Listing |