Genome-Wide Identification and Evolution of Core Cell Cycle Genes in Marchantia polymorpha: Insights Into Redundancy, Stress, and Functional Evolution.

Physiol Plant

Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, College of Plant Protection, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture an

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The cell cycle is a fundamental process of plant growth, development, and reproduction, in which cyclin-dependent kinases (CDKs) and cyclins (CYCs) play central roles in regulating the progression through various stages. These proteins are coordinated with multiple interacting partners to ensure the accurate execution of essential biological events such as DNA replication, chromosome segregation, and cell division. Marchantia polymorpha, one of the earliest diverging land plant species, has emerged as a key model for exploring fundamental mechanisms in plant biology and evolution. However, compared with other model plants, such as Arabidopsis thaliana and Oryza sativa, the core cell cycle genes in M. polymorpha remain relatively uncharacterized. In this study, we identified 31 core cell cycle genes in M. polymorpha through genome-wide analysis, including 13 CDKs, 8 CYCs, 5 E2F/DPs, 1 ICK, 1 RB, 1 CKS, and 2 Wee1 genes. We further analyzed their physicochemical properties, gene structures, and conserved domains, along with evolutionary pressures assessed via Ka/Ks and 4DTv analyses. Comparative genomic analysis revealed patterns of gene contraction and expansion. Additionally, we predicted cis-acting regulatory elements and performed differential expression analysis under various stress conditions to explore their potential functions and expression profiles. Finally, a protein-protein interaction (PPI) network was constructed, and key genes were experimentally validated. These findings provide valuable insights into the core cell cycle gene family in M. polymorpha, contributing to an enhanced understanding of cell cycle regulation and its evolutionary significance in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.70485DOI Listing

Publication Analysis

Top Keywords

cell cycle
24
core cell
16
cycle genes
12
marchantia polymorpha
8
genes polymorpha
8
cell
7
cycle
6
genes
5
polymorpha
5
genome-wide identification
4

Similar Publications

While agriculture is essential for food security, the intensive use of pesticides in modern farming practices raises concerns on their impact, in particular from a One Health perspective. In 2024, Brazil approved 663 new pesticides, a 19% increase in comparison with 2023. The occupational exposure of rural workers is known to be associated with a range of health outcomes, including cancer.

View Article and Find Full Text PDF

The E2F family of transcription factors are key regulators of the cell cycle in all metazoans. While they are primarily known for their role in cell cycle progression, E2Fs also play broader roles in cellular physiology, including the maintenance of exocrine tissue homeostasis. However, the underlying mechanisms that render exocrine cells particularly sensitive to E2F deregulation remain poorly understood.

View Article and Find Full Text PDF

Through applying the hybridization technique, new coumarin derivatives (2-17) were prepared with substitution at coumarin C-3 utilizing various heterocyclic derivatives, aiming to afford multi-target carbonic anhydrases (CAs) IX/XII and topoisomerase II (Topo II) inhibitors with potent antiproliferative activity. Eight different cell lines were used to evaluate the growth inhibition percentages (GI%) of cancer cells determined by coumarin analogues 1-17. Analogues 16 and 17 had the most substantial cytotoxic effects, achieving mean GI% of 86.

View Article and Find Full Text PDF

The Effect of Cachexia on the Feeding Regulation of Skeletal Muscle Protein Synthesis in Tumour-Bearing Mice.

J Cachexia Sarcopenia Muscle

September 2025

Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee, USA.

Background: Cancer promotes muscle wasting through an imbalance in the tightly regulated protein synthesis and degradation processes. An array of intracellular signalling pathways, including mTORC1 and AMPK, regulate protein synthesis, and these pathways are responsive to the muscle's microenvironment and systemic stimuli. Although feeding and fasting are established systemic regulators of muscle mTORC1 and protein synthesis, the cancer environment's impact on these responses during cachexia development is poorly understood.

View Article and Find Full Text PDF

In vivo itaconate tracing reveals degradation pathway and turnover kinetics.

Nat Metab

September 2025

Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.

Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized by tricarboxylic acid (TCA) metabolism downstream of TLR signalling. Itaconate-based treatment strategies are under investigation to mitigate numerous inflammatory conditions.

View Article and Find Full Text PDF