Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Scorpion venom contains various bioactive peptides, but there are many scorpion species whose venom has not been studied. The genus Compsobuthus, belonging to the family Buthidae, is relatively diverse, but there have been no reports on their venom components. In the present study, we characterized venom components of the Compsobuthus egyptiensis scorpion inhabiting the northern Egyptian desert. Mass spectrometry analysis of the venom revealed that the components with molecular masses from 3000 to 4000 Da were relatively abundant among 198 components detected. We then isolated a novel insecticidal peptide, Ce-1, from one of the HPLC fractions showing insecticidal activity. The structure of Ce-1 was determined using a combination of Edman degradation and de novo MS/MS sequencing analyses. This revealed that Ce-1 consists of 36 amino acid residues with four disulfide bonds. The deduced structure was confirmed by comparison with the synthetic peptide. Ce-1 shares high sequence homology to chlorotoxin-like peptides, which consist of an α-helix and an antiparallel triple-stranded β-sheet cross-linked by four disulfide bonds. Future research on Ce-1 will contribute to elucidating the mechanism of action of insecticidal chlorotoxin-like peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2025.108556DOI Listing

Publication Analysis

Top Keywords

novel insecticidal
8
insecticidal chlorotoxin-like
8
compsobuthus egyptiensis
8
egyptiensis scorpion
8
venom components
8
peptide ce-1
8
disulfide bonds
8
chlorotoxin-like peptides
8
venom
6
ce-1
5

Similar Publications

Degradation and ecological risk of a novel neonicotinoid insecticide imidaclothiz in aquatic environments: Kinetics, photodegradation and hydrolysis pathways, mechanism and metabolites toxicity evaluation.

Pestic Biochem Physiol

November 2025

Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute of Ecological Environmental Protection and Pollution Remediation Engineering, Anhui Agricultural U

Neonicotinoid insecticides residuals pose a threat to aquatic ecosystems and human health. Imidaclothiz, as a novel neonicotinoid pesticide, the metabolic mechanisms in aquatic environments was unclear. This study investigated the degradation characteristics of imidaclothiz in both pure and actual water, and analyzed the photodegradation and hydrolysis metabolites of imidaclothiz in aquatic environments and assessed their toxicity.

View Article and Find Full Text PDF

The fall armyworm (Spodoptera frugiperda, FAW) has developed varying degrees of resistance to chlorantraniliprole (CAP). Apoptosis serves as a critical defense mechanism against pesticide stress in insects. Here, we identified a juvenile hormone (JH)-mediated apoptotic pathway through RNA-seq, revealing nine JH-induced apoptosis-related genes (four positively correlated and five negatively correlated).

View Article and Find Full Text PDF

RNAi bioassays targeting bursicon reveal potential targets for pest control of Henosepilachna vigintioctopunctata.

Pestic Biochem Physiol

November 2025

Henan Engineering Laboratory of Pest Biological Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, People's Republic of China.

Henosepilachna vigintioctopunctata represents a significant economic pest, typically controlled through the use of chemical insecticides. The introduction of RNA interference (RNAi) technology has opened new avenues for biopesticide development, leading to the identification of various genes that are crucial for the growth and development of insects. However, the efficient screening of target genes in H.

View Article and Find Full Text PDF

The pleiotropic odorant binding protein CaspOBP12 involved in perception of Ceutorhynchus asper for plant volatiles and pesticides.

Pestic Biochem Physiol

November 2025

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural

The olfactory system of insects plays a vital role in their survival by enabling them to detect chemical cues and adapt to changing environments. The rape stem weevil, Ceutorhynchus asper, is a significant pest posing a challenge for rapeseed production due to its destructive feeding habit and increasing resistance to insecticides. So far, there's still limited knowledge about structure and function of odorant binding proteins (OBPs) in beetles like C.

View Article and Find Full Text PDF

Unravelling the novel mode of action of the spinosyn insecticides: A 25 year review.

Pestic Biochem Physiol

November 2025

Corteva Agriscience, Indianapolis, IN 46268, USA; Retired - Present address Agrilucent LLC, Morro Bay, CA 93442, USA.

Since their registration more than 25 years ago, the spinosyns have become a significant insect management tool in farmers' battles to protect crop quality and yield. Spinosad (Qalcova™ active) and spinetoram (Jemvelva™ active), the two members of the Insecticide Resistance Action Committee (IRAC) Group 5 nicotinic acetylcholine receptor (nAChR) allosteric modulators Site I, class of insecticides, have proven highly effective at controlling chewing insect pests on over 250 different crops. Their importance as an integral rotation partner in insect pest management programs has stimulated a large body of research into their mode of action (MoA) and mechanisms of resistance.

View Article and Find Full Text PDF