Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The treatment of osteoporosis and related bone defects remains challenging. This study identifies pyroptosis-driven inflammation as a key disruptor of bone homeostasis. To address this, we develop a magnesium-gelatin composite microsphere scaffold (GelMa/Mg/DMF MS) that exploit pyroptosis blockade and hydrogen-mediated inflammation regulation for osteoporosis treatment. This porous microsphere scaffold is implanted into bone defects to achieve the sustained release of hydrogen gas, magnesium ions (Mg), and dimethyl fumarate (DMF). DMF act by activating the nuclear factor erythroid-related factor 2 to prevent osteoblast pyroptosis, and combine with the antioxidant effects of hydrogen, effectively remodel the inflammatory microenvironment and create favorable conditions for the restoration of bone homeostasis. Mg further expedite bone tissue repair. These results demonstrate that the GelMa/Mg/DMF MS effectively reverse inflammatory microenvironments both in vivo and in vitro, resulting in significant tissue repair. These results suggest the combination of hydrogen therapy and pyroptosis blockade as a potential therapeutic strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398577PMC
http://dx.doi.org/10.1038/s41467-025-63456-5DOI Listing

Publication Analysis

Top Keywords

inflammatory microenvironment
8
bone defects
8
bone homeostasis
8
microsphere scaffold
8
pyroptosis blockade
8
tissue repair
8
bone
5
pyroptosis-responsive microspheres
4
microspheres modulate
4
modulate inflammatory
4

Similar Publications

Osteosarcoma (OS), the most prevalent primary bone malignancy in adolescents, is characterized by aggressive progression and early metastasis. However, the epigenetic drivers of its metastatic heterogeneity remain poorly understood. Herein, we integrated bulk DNA methylation profiling and single-cell RNA sequencing (scRNA-seq) to elucidate the epigenetic mechanisms driving OS metastatic heterogeneity.

View Article and Find Full Text PDF

Remodeling the sarcoma microenvironment by simultaneous targeting of urokinase-type plasminogen activator receptors and epidermal growth factor receptors to promote antitumor activity.

J Pharmacol Exp Ther

August 2025

Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Center for Immunology

We evaluated the antitumor effects of remodeling the MC17 mouse sarcoma microenvironment (SME) by targeting urokinase-type plasminogen activator receptor (uPAR)- and epidermal growth factor receptor (EGFR)-expressing cells. Specifically, we used eBAT (a bispecific ligand-targeted toxin directed to EGFR and uPAR), and its mouse counterpart, meBAT, to ablate uPAR- and/or EGFR-expressing cells. We chose the MC17 model because the cells are resistant to eBAT, allowing us to exclusively evaluate the role of uPAR- and EGFR-expressing cells in the SME.

View Article and Find Full Text PDF

Purpose: We reviewed recent advancements in the characterization of intraductal oncocytic papillary neoplasm (IOPN) of the pancreas, with a specific focus on developments in immunohistochemical markers, molecular pathology, and pathogenic mechanisms over the past ten years (2015-2024). Through comprehensive analysis of current literature, we aimed to elucidate the evolving understanding of IOPN's biological behavior and diagnostic features, while identifying potential areas for future research in this distinctive pancreatic neoplasm.

Methods: English-language articles on IOPN were searched from Pubmed from the first report of IOPN of the pancreas in 2015 to 2024.

View Article and Find Full Text PDF

The interaction between the skin microbiome and antimicrobial peptides within the epidermal immune microenvironment: Bridging insights into atopic dermatitis.

Allergol Int

September 2025

Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan. Electronic address:

The epidermal immune microenvironment is a multifaceted system in which the interplay between the skin microbiome and antimicrobial peptides plays a pivotal role in sustaining skin homeostasis and preventing dysbiosis. Disruption of these interactions can lead to inflammatory skin conditions such as atopic dermatitis. This review aims to explore the complex mechanisms by which antimicrobial peptides and the skin microbiome communicate within the epidermal immune microenvironment, emphasizing causal dynamics and the dual role of antimicrobial peptides.

View Article and Find Full Text PDF

Nanodrug-based therapeutic interventions for tumor-associated microbiota modulation.

J Control Release

September 2025

Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China. Electronic address:

The tumor microenvironment (TME) is a complex and dynamic ecosystem that significantly influences tumor progression, immune modulation, and therapeutic response. A key component of the TME is the tumor-associated microbiota, which has emerged as an important player in cancer biology, affecting tumor metastasis, immune evasion, and resistance to treatments. The recent advent of high-throughput sequencing technologies has revolutionized our understanding of the microbiome, revealing distinct microbial communities across various tumor types.

View Article and Find Full Text PDF