A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Hypoxia-Induced PRMT1 Lactylation Drives Vimentin Arginine Asymmetric Dimethylation in Tumor Metastasis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metastasis contributes to around 90% of cancer mortality, but effective strategies to disrupt metastatic cascades remain elusive. Hypoxia-driven epithelial-mesenchymal transition (EMT) promotes cancer cell spread, yet the post-translational mechanisms governing cytoskeletal reprogramming here remain incompletely defined. This study reports a hypoxia-inducible post-translational modification cascade: under hypoxia, protein arginine methyltransferase 1 (PRMT1) is lactylated at evolutionarily conserved residues K134/K145, enhancing its methyltransferase activity to catalyze the asymmetric dimethylation (aDMA) of vimentin at R64. This modification drives vimentin filament assembly, cytoskeletal remodeling, and metastasis in preclinical models. shPRMT1 or vimentin R64K mutation (methylation-deficient) abrogates hypoxia-enhanced migration in vitro and metastasis in vivo. Hypoxia reduces the protein levels of HDAC8 (PRMT1's delactylase), boosting PRMT1 lactylation. PRMT1 K134R/K145R mutants (lactylation - deficient) lose the ability to bind vimentin and fail to rescue filament formation. In triple-negative breast cancer (TNBC), vimentin R64 aDMA levels correlate with advanced tumor stage and poor patient survival. PRMT1 inhibitor MS023 reduces xenograft metastasis with low toxicity. These findings establish a hypoxia-PRMT1-vimentin axis, identifying vimentin R64 aDMA as a metastatic regulator. Inhibiting PRMT1 represents a promising anti-metastasis strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202509861DOI Listing

Publication Analysis

Top Keywords

vimentin r64
12
prmt1 lactylation
8
drives vimentin
8
asymmetric dimethylation
8
r64 adma
8
vimentin
7
metastasis
5
prmt1
5
hypoxia-induced prmt1
4
lactylation drives
4

Similar Publications