98%
921
2 minutes
20
Background And Aims: Type 1 short QT syndrome (SQT1) is a genetic channelopathy caused by gain-of-function variants in KCNH2. This shortens cardiac repolarization and QT intervals, predisposing patients to ventricular arrhythmias and sudden cardiac death. This study aimed to investigate the therapeutic efficacy of KCNH2-specific suppression-and-replacement (KCNH2-SupRep) gene therapy in a transgenic rabbit model of SQT1.
Methods: KCNH2-SupRep was developed by combining a KCNH2-shRNA with its corresponding shRNA-immune KCNH2-cDNA into an AAV9 vector, delivered directly into the aortic root (1x1010 vg/kg). Therapeutic efficacy was evaluated in vivo by electrocardiogram, ex vivo by optical mapping, and at cellular levels by patch-clamp, calcium imaging, and qPCR in ventricular cardiomyocytes (VCMs).
Results: In vivo, KCNH2-SupRep normalized the heart rate-corrected QT (QTc) in SQT1 rabbits, without affecting repolarization heterogeneity. Ex vivo, KCNH2-SupRep corrected the action potential duration (APD90) and resolved the increased apicobasal APD90 heterogeneity observed in untreated (UT)-SQT1 hearts, supporting an antiarrhythmic effect, which was further validated by reduced re-entry formation in silico. At cellular levels, KCNH2-SupRep prolonged APD90 in VCMs from SupRep-SQT1 rabbits closer to wildtype levels compared to UT- and sham-SQT1. Additionally, KCNH2-SupRep restored the cellular surrogate of the electro-mechanical window and normalized IKr in nearly 50% of VCMs, in line with a 50-60% suppression of the mutant KCNH2 transcript.
Conclusions: This proof-of-concept study is the first to demonstrate the efficacy of gene therapy for SQT1 in a medium-sized animal model. KCNH2-SupRep gene therapy successfully corrected the pathologic phenotype in vivo, ex vivo and at cellular levels in transgenic SQT1 rabbits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/eurheartj/ehaf660 | DOI Listing |
Clin Appl Thromb Hemost
September 2025
Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
Hemophilia, an X-linked monogenic disorder, arises from mutations in the or genes, which encode clotting factor VIII (FVIII) or clotting factor IX (FIX), respectively. As a prominent hereditary coagulation disorder, hemophilia is clinically manifested by spontaneous hemorrhagic episodes. Severe cases may progress to complications such as stroke and arthropathy, significantly compromising patients' quality of life.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Medical Lab Technology, College of health and medical technology, Sulaimani Polytechnic University, Sulaimani, 46001, Kurdistan Region, Iraq.
Background: Sinusitis is a common respiratory infection increasingly associated with antibiotic-resistant Staphylococcus aureus, posing significant treatment challenges. The emergence of methicillin-resistant S. aureus (MRSA) in sinus infections necessitates comprehensive profiling of resistance patterns to guide effective therapy.
View Article and Find Full Text PDFFam Cancer
September 2025
School of Social Policy and Practice, University of Pennsylvania, Philadelphia, USA.
Li-Fraumeni syndrome (LFS) is an early-onset cancer syndrome caused by pathogenic germline TP53 variants. Adolescents and young adults (AYAs) with LFS may have challenges navigating new romantic partnerships given the significant effects of LFS on multiple life domains that also affect partners (e.g.
View Article and Find Full Text PDFElife
September 2025
Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Immunogenic cell death (ICD) is a type of cell death sparking adaptive immune responses that can reshape the tumor microenvironment. Exploring key ICD-related genes in bladder cancer (BLCA) could enhance personalized treatment. The Cancer Genome Atlas (TCGA) BLCA patients were divided into two ICD subtypes: ICD-high and ICD-low.
View Article and Find Full Text PDFJACC Case Rep
September 2025
Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA; Northwestern Feinberg School of Medicine, Chicago, Illinois, USA.
Background: Loeys-Dietz syndrome (LDS) is a rare connective tissue disorder (CTD) with musculoskeletal, craniofacial, and cardiovascular features with a prevalence of approximately 1:50,000. Morbidity and mortality often occur earlier in patients with LDS compared to patients with other CTDs.
Case Summary: We present a teenager with subacute heart failure, 4/6 holosystolic murmur with diastolic rumble, facial differences, and arachnodactyly.