Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two-dimensional covalent organic frameworks (2D COFs) have emerged as promising photocatalysts due to their high surface areas and precisely tunable physicochemical properties. However, it remains a significant challenge to precisely control over interlayer stacking configurations in 2D COFs, which critically influence charge carrier transport and consequently determine catalytic efficiency. In this study, we demonstrate a solvent-driven strategy to precisely regulate the interlayer stacking configurations of metal-incorporated 2D COFs, successfully achieving both AA eclipsed (COF-TD-AA) and ABC staggered (COF-TD-ABC) configurations. Notably, by modulating the coordination interactions between solvent 1-butanol and Zn (within the COFs), the interactions between the Zn and nitrogen atoms (from imine bonds, pyridine, and triazine units) can be precisely tuned, which leads to the formation of AA or ABC stacked 2D COFs. Interestingly, the ABC-stacked COF-TD-ABC exhibited an extended light absorption and superior charge migration/separation efficiency than those of COF-TD-AA. As a result, when coupled with Pt co-catalysts, COF-TD-ABC achieved a high hydrogen evolution rate up to 10.92 mmol g h, representing a ∼3.5-fold enhancement over COF-TD-AA (3.12 mmol g h). This work provides a fundamental insight into the stacking-dependent structure-property relationships in COFs, paving the way for the rational design of high-performance COF-based photocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202512603DOI Listing

Publication Analysis

Top Keywords

stacking configurations
12
covalent organic
8
organic frameworks
8
interlayer stacking
8
cofs
6
solvent-driven precise
4
precise control
4
control stacking
4
configurations
4
configurations covalent
4

Similar Publications

High-Performance Air-Stable Polymer Monolayer Transistors for Monolithic 3D CMOS logics.

Adv Mater

September 2025

State Key Laboratory of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing, 100029, China.

The monolayer transistor, where the semiconductor layer is a single molecular layer, offers an ideal platform for exploring transport mechanisms both theoretically and experimentally by eliminating the influence of spatially correlated microstructure. However, the structure-property relations in polymer monolayers remain poorly understood, leading to low transistor performance to date. Herein, a self-confinement effect is demonstrated in the polymer monolayer with nanofibrillar microstructures and edge-on orientation, as characterized by the 4D scanning confocal electron diffraction method.

View Article and Find Full Text PDF

CrF Jahn-Teller-Distorted Fluoroperovskites: Expanding to RbCrF and CsCrF.

Inorg Chem

September 2025

Chemistry Department and Center for Material Science and Nanotechnology, University of Oslo, Oslo NO-0315, Norway.

The Jahn-Teller effect significantly affects the CrF octahedra in Cr(II) fluoroperovskites. Here, we report the synthesis, crystal structures, and magnetic properties of RbCrF and CsCrF, thereby completing a comprehensive investigation of the CrF fluoroperovskites. Powder samples are prepared using a wet-chemical method, which allows stabilization of Cr(II).

View Article and Find Full Text PDF

With the widespread adoption of internet technologies and email communication systems, the exponential growth in email usage has precipitated a corresponding surge in spam proliferation. These unsolicited messages not only consume users' valuable time through information overload but also pose significant cybersecurity threats through malware distribution and phishing schemes, thereby jeopardizing both digital security and user experience. This emerging challenge underscores the critical importance of developing effective spam detection mechanisms as a cornerstone of modern cybersecurity infrastructure.

View Article and Find Full Text PDF

A new series of dithioalkylated-methylidenyl-cyclopentadithiophene (CDTS)-based self-assembled monolayers (SAMs), including CDTS-MN (1), CDTS-MN (1b), CDTS-CA (2), and CDTS-PA (3), are developed for tin perovskite solar cells (TPSCs). Each SAM incorporates sulphur rich center CDTS and is complemented with various anchoring groups, such as methylenemalononitrile, cyanoacrylic acid, and cyano-vinyl-phosphonic acid in driving the formation of well-crystallized and homogeneous perovskite layers using a two-step fabrication process. Nickel Oxide (NiOx) combined with the newly designed CDTS-based SAMs is utilized as the hole transport material (HTM).

View Article and Find Full Text PDF

Graphene layers can assemble in two shifted metastable positions per interface, leading to eight possible structural arrangements in five-layer graphene, six of which correspond to distinct periodic crystals. These polytypes exhibit diverse symmetries, interlayer electronic hybridization, van der Waals adhesion, and optical responses. Arrangements lacking inversion [I] and mirror [M] symmetries host intrinsic polarizations, while those with sufficiently flat electronic bands display orbital magnetization, unconventional superconductivity, and anomalous fractional quantum Hall states.

View Article and Find Full Text PDF