98%
921
2 minutes
20
This study presents a method development and evaluation framework for assessing longitudinally the dynamic alveolar bone changes in a murine periodontal injury model using 3D Slicer software. Accurate and reproducible measurement of bone loss is crucial for periodontal research, yet traditional two-dimensional (2D) histological approaches lack the ability to capture three-dimensional (3D) alterations, while inconsistencies in image alignment, region of interest (ROI) selection, and segmentation have limited the widespread adoption of 3D micro-CT analysis in small animal models. Here, we present a standardized workflow, incorporating defined criteria for ROI selection, scan alignment, and segmentation suitable for live micro-CT scanning. We validated this method using the ligature-induced periodontal injury model in mice. Multiple micro-CT scans were performed over 35 days to evaluate changes to alveolar bone and tooth roots. Quantitative analysis highlighted significant bone loss and early-stage remodeling within the first two weeks. Following ligature removal at 3 weeks, bone loss largely resolved by the end of week 5. However, we find that although the total bone volume mostly recovers, permanent changes at the alveolar crest persist, and additional cementum was formed at the apical tooth root. By enhancing methodological consistency, this standardized protocol improves the accuracy and comparability of longitudinal studies and minimizes variability in small animal studies, providing a reliable framework for functional investigations. Through its application, we show for the first time that, beyond alveolar bone regeneration, cementum apposition at the root apex is also observed. This opens up studies investigating how root loss at the apex could be restored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2025.117619 | DOI Listing |
Objective: Previous studies of nerve distribution in the orofacial complex have focused primarily on the anatomic courses of nerve fibers and have rarely addressed the density of nerve distribution. The nerve distribution in the mandible was described in only one report which showed an increase in nerve distribution density moving from the alveolar crest toward the inferior alveolar nerve. However, no previous reports have focused on the nerve distribution density in the maxilla.
View Article and Find Full Text PDFEur Arch Paediatr Dent
September 2025
Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, Brazil.
Purpose: This systematic review provides a critical evaluation, synthesis of the existing literature on isotretinoin's effects on craniomaxillofacial bone.
Methods: Following the PRISMA guidelines and registered in PROSPERO, the review was conducted in August 2024 across various databases. Eligible in vivo studies were analysed for their assessment of isotretinoin's effects on craniomaxillofacial bone.
FASEB J
September 2025
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials
The onset and progression of periodontitis are closely related to metabolic reprogramming in the periodontal microenvironment, with osteoclasts playing a critical role in tissue destruction. Single-cell RNA sequencing (scRNA-seq) of periodontal tissues from healthy individuals and patients with severe chronic periodontitis revealed a significant increase in the expression of mitochondrial-related genes during osteoclast differentiation, suggesting the critical role of mitochondrial function in this process. This study investigates the potential of the novel mitoribosome-targeting antibiotic radezolid in inhibiting osteoclast differentiation.
View Article and Find Full Text PDFOrthod Craniofac Res
September 2025
Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, Florida, USA.
Objective(s): In this pilot study, exosomes from saliva were isolated and tested for the presence of metabolomic biomarkers for physiological external root resorption and/or pathological alveolar bone resorption.
Settings And Sample Population: Saliva samples of 20 individuals in the mixed dentition stage of dental development.
Materials And Methods: Saliva was obtained from healthy control children with resorbing primary teeth or children with localised aggressive periodontitis (LAP) showing alveolar bone loss but little root resorption.
Cureus
August 2025
Department of Oral and Maxillofacial Surgery, University College of Medicine and Dentistry, The University of Lahore, Lahore, PAK.
Background And Aim: The incisive (nasopalatine) canal is an important anatomical structure of the anterior maxilla. It holds significance for surgeries and implant placement in the central incisor region. The size, shape, and relation with surrounding bones may vary by age, gender, and ethnicity.
View Article and Find Full Text PDF