98%
921
2 minutes
20
The heart is the first organ to form in the developing embryo. Throughout development, it continues to grow and function to support the maturing fetus by circulating nutrients to all of the developing organs. Defects in the spatial organization of cardiac cells can lead to congenital heart defects (CHD), which affects 1-3 % of all live births, as well as adult heart diseases. Spatial transcriptomics has revolutionized our understanding of cardiac biology by providing high-resolution maps of gene expression within intact tissue, offering insights into cellular interactions and spatial organization across the entire heart. Recent improvements have enabled precise mapping of cellular heterogeneity within developing human hearts, revealing spatially organized populations of cardiomyocytes and non-cardiomyocyte cells and key signaling pathways in cardiac morphogenesis. Studies of adult hearts post-myocardial infarction (MI) using these technologies have unraveled gene expression patterns specific to injury zones. Furthermore, multi-modal approaches combining spatial transcriptomics with epigenetic, proteomic, and functional data have expanded our understanding of cell type-specific responses and molecular mechanisms underpinning cardiac injury responses and fibrosis. Here, we describe the range of spatial transcriptomic technologies currently available and discuss the technical considerations involved in conducting spatial analyses. We further highlight the progression from early spatial mapping techniques to contemporary high-resolution, multi-modal approaches in studying cardiac tissue, underscoring how these advancements provide unprecedented insights into heart development, disease, and regeneration, and discuss future directions for applying spatial transcriptomics to address fundamental questions in cardiovascular biology and therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.semcdb.2025.103648 | DOI Listing |
Background: Functional and structural studies of the brain highlight the importance of white matter alterations in schizophrenia. However, molecular studies of the alterations associated with the disease remain insufficient.
Aim: To study the lipidome and transcriptome composition of the corpus callosum in schizophrenia, including analyzing a larger number of biochemical lipid compounds and their spatial distribution in brain sections, and corpus callosum transcriptome data.
JID Innov
November 2025
Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Japan.
Previous studies have revealed that skin T cells accumulate and maintain immune responses in the elderly. However, we questioned why these functional T cells fail to recognize and eliminate malignant cells, making elderly skin more prone to developing malignant tumors. To address this question, we examined the overall skin microenvironment in aging using the Nanostring nCounter system and 10x Xenium digital spatial RNA sequencing.
View Article and Find Full Text PDFNeuropsychiatr Dis Treat
September 2025
Department of Radiology, No. 926 Hospital, Joint Logistics Support Force of PLA, Kaiyuan, Yunnan, 661699, People's Republic of China.
Parkinson's disease (PD) represents a progressive neurodegenerative disorder with escalating global burden, with mechanistic studies revealing α-synuclein propagation through gut-brain axis, mitochondrial defects, and neuroinflammatory cascades driven by genetic-environmental interplay. Recent advancements in diagnostic paradigms have successfully combined α-synuclein seed amplification assays with multimodal neuroimaging techniques, achieving an impressive diagnostic accuracy of 92% during the prodromal stages of disease. Phase II trials highlight disease-modifying potential of α-synuclein-targeting immunotherapies (40% reduction in motor decline) and LRRK2 kinase inhibitors showing blood-brain barrier penetration.
View Article and Find Full Text PDFAnalyst
September 2025
School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
Microfluidics-assisted spatially barcoded microarray technology offers a high-throughput, low-cost approach towards spatial transcriptomic profiling. A uniform barcoded microarray is crucial for spatially unbiased mRNA analysis. However, non-specific adsorption of barcoding reagents in microchannels occurs during liquid transport, causing non-uniform barcoding in the chip's functional regions.
View Article and Find Full Text PDFEnviron Int
September 2025
Center for Respiratory Safety Research, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea. Electronic address:
Plastics, particularly polystyrene (PS), are extensively used worldwide, especially in disposable packaging, which contributes to environmental pollution by generating microplastic particles. Herein, we investigated the pulmonary toxic effects of PS microplastics, focusing on airway inflammation and immune response. PS microplastic (50 nm to 1 μm) exposure was more likely to cause a severe pulmonary inflammatory response, particularly with smaller particle sizes.
View Article and Find Full Text PDF