98%
921
2 minutes
20
Vegetables are considerably affected by plasticizer pollution. This study investigated the transformation process and toxic mechanisms of dimethyl phthalate (DMP) and butyl benzyl phthalate (BBP), in lettuce. Six phase I transformation products of DMP and nine phase I transformation products of BBP were screened and identified using UPLC-QTOF-MS, which were primarily generated via hydrolysis, hydroxylation, and decarboxylation. Significant alterations in metabolites and genes associated with carbohydrate and nucleotide metabolism were observed, unraveling that lettuce may respond to DMP and BBP stresses by increasing energy supply and nucleotide metabolism. Furthermore, BBP hindered the expression of l-proline, salicylic acid, β-alanine, and , thereby affecting the synthesis of secondary metabolites and exacerbating oxidative damage. Our findings provide novel insights for assessing the ecological risk and food safety of lettuce contaminated with DMP and BBP, promoting the supervision of plastic usage during agricultural activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.5c07218 | DOI Listing |
J Am Chem Soc
September 2025
Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States.
Two-dimensional (2D) materials offer a valuable platform for manipulating and studying chemical reactions at the atomic level, owing to the ease of controlling their microscopic structure at the nanometer scale. While extensive research has been conducted on the structure-dependent chemical activity of 2D materials, the influence of structural transformation during the reaction has remained largely unexplored. In this work, we report the layer-dependent chemical reactivity of MoS during a nitridation atomic substitution reaction and attribute it to the rearrangement of Mo atoms.
View Article and Find Full Text PDFBiomacromolecules
September 2025
Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.
Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
Developing cost-effective spinel oxide catalysts with both high oxygen evolution reaction (OER) activity and stability is crucial for advancing sustainable clean energy conversion. However, practical applications are often hindered by the activity limitations inherent in the adsorbate evolution mechanism (AEM) and the stability limitations associated with the lattice oxygen mechanism (LOM). Herein, we demonstrate structural changes induced by phase transformation in CoMn spinel oxides, which yield more active octahedral sites with shortened intersite distance.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department Chemie- und Bioingenieurwesen, Lehrstuhl für Chemische Reaktionstechnik (CRT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, 91058, Erlangen, Germany.
The supported catalytically active liquid metal solution (SCALMS) concept is based on catalytically active metals dissolved in a low-melting-point liquid metal matrix. These solid alloy particles, deposited over a high area support, transform into a liquid alloy under reaction conditions. In this work, GaPt SCALMS materials of varying composition are investigated and focus on the change in the alloy composition during preheating, the actual high temperature propane dehydrogenation at 823 K, and after cool-down.
View Article and Find Full Text PDF