98%
921
2 minutes
20
Stress is a common human reaction to demanding circumstances, and prolonged and excessive stress can have detrimental effects on both mental and physical health. Heart rate variability (HRV) is widely used as a measure of stress due to its ability to capture variations in the time intervals between heartbeats. However, achieving high accuracy in stress detection through machine learning (ML), using a reduced set of statistical features extracted from HRV, remains a significant challenge. In this study, we aim to address these challenges by proposing lightweight ML models that can effectively detect stress using minimal HRV features and are computationally efficient enough for IoT deployment. We have developed ML models incorporating efficient feature selection techniques and hyper-parameter tuning. The publicly available SWELL-KW dataset has been utilized for evaluating the performance of our models. Our results demonstrate that lightweight models such as -NN and Decision Tree can achieve competitive accuracy while ensuring lower computational demands, making them ideal for real-time applications. Promisingly, among the developed models, the -nearest neighbors ( -NN) algorithm has emerged as the best-performing model, achieving an accuracy score of 99.3 using only three selected features. To confirm real-world deployability, we benchmarked the best model on an 8 GB NVIDIA Jetson Orin Nano edge device, where it retained 99.26% accuracy and completed training in 31 s. Furthermore, our study has incorporated local interpretable model-agnostic explanations to provide comprehensive insights into the predictions made by the -NN-based architecture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380676 | PMC |
http://dx.doi.org/10.3389/fdgth.2025.1523381 | DOI Listing |
BMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
BMC Nephrol
September 2025
School of Computer Science and Technology, Guangxi University of Science and Technology, Liuzhou, China.
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFOdontology
September 2025
Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Department of Surgery, Mannheim School of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.
Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.