Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Top-down proteomics (TDP) is a powerful approach for characterizing intact protein molecules and their diverse proteoforms. Despite recent advances, current TDP software tools often suffer from fragmented workflows, steep learning curves for non-experts, or limited interactive visualization capabilities. To address these challenges, we introduce TDEase, an integrated analytical framework designed to streamline and enhance TDP data interpretation, with a current focus on integration with the TopPIC suite package for targeted proteoform characterization. TDEase features a modular architecture comprising TDPipe, a multi-process data processing engine, and TDVis, an interactive web-based visualization module. TDPipe automates the execution of mainstream TDP analysis algorithms through a user-configurable pipeline, ensuring seamless and reproducible data processing. The TDVis module then transforms these results into dynamic, interactive dashboards, enabling multidimensional data exploration, including feature maps and PTM analysis. An alternative version, TDVisWeb, is also available for visualizing the results on an internet server or intranet workstation at institutional core facilities. We demonstrated the software capabilities in proteoform identification and comparative analysis using published histone datasets. TDEase is built with Python and open-source, allowing future improvements and incorporation of more data types as the TDP community develops new software. Source code is available at https://github.com/Computational-TDMS/TDEase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.70031 | DOI Listing |