98%
921
2 minutes
20
Chimeric antigen receptor T cell (CAR-T) therapy has shown remarkable promise in treating hematological malignancies. However, the expansion of CAR-T cells is time-consuming, potentially impairing CAR-T cell function. Physiologically, T cell activation and proliferation occur within the lymph node (LN) paracortex, a dynamic environment structured by a three-dimensional (3D) reticular network (RN) that promotes cell migration and mediator delivery. Mimicking this physiological niche offers a compelling strategy to improve CAR-T cell expansion. Inspired by the structure of the RN, we developed a biomimetic RN-like poriferous microsphere (PM) to establish a 3D culture platform optimized for both T cell and CAR-T cell proliferation. This engineered system not only significantly enhanced the proliferation rates of human T cells and CAR-T cells compared to conventional methods, but also preserved a higher proportion of central memory T cells (T) and reduced the expression of exhaustion markers (PD-1, TIM-3, and LAG-3). Moreover, CAR-T cells expanded in PMs exhibited superior anti-tumor efficacy in both and models, which correlated with the enrichment of pathways associated with robust T cell function at the RNA level. Overall, this biomimetic platform addresses critical limitations in human T/CAR-T cell expansion, preserving cell function and improving therapeutic outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5tb01594d | DOI Listing |
Ann Hematol
September 2025
Excellence Center for Comprehensive Cancer (ECCCC), King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
Despite therapeutic advances, multiple myeloma (MM) remains incurable, especially in relapsed/refractory (R/R) cases. B-cell maturation antigen (BCMA) is a key target for novel immunotherapies, including chimeric antigen receptor T-cell (CAR-T) therapies and bispecific T-cell engagers (BiTEs), which vary in efficacy, toxicity, and accessibility. To compare the efficacy and safety of BCMA-directed CAR-T therapies and BiTEs in R/R MM through a systematic review and meta-analysis.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
September 2025
Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy but are increasingly linked to immune-related kidney injury (irKI). This study presents the first bibliometric analysis of irKI research (2000-2025), aiming to identify key trends, mechanistic insights, and pharmacological risk factors. We analyzed 2,179 publications to understand the evolution of irKI research, focusing on areas like T cell-mediated tubular injury, immune system-driven inflammation, and changes in metabolism.
View Article and Find Full Text PDFBiotechnol J
September 2025
Department of Biochemical Engineering, University College London, London, UK.
Chimeric antigen receptor T-cell (CAR-T) therapies have demonstrated clinical efficacy in treating haematological malignancies, resulting in multiple regulatory approvals. However, there is a need for robust manufacturing platforms and the use of GMP-aligned reagents to meet the clinical and commercial demands. This study investigates the impact of serum/xeno-free medium (SXFM) and cytokine supplementation on CAR-T cell production in static and agitated culture systems, using 24-well plate G-Rex vessels and 500 mL stirred tank bioreactors (STRs), respectively.
View Article and Find Full Text PDFJ Immunother Cancer
September 2025
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
Background: Patients with acute myeloid leukemia (AML) are often older, which brings challenges of endurance and persistent efficacy of autologous chimeric antigen receptor (CAR)-T cell therapies. Allogenic CAR-natural killer (NK) cell therapies may offer reduced toxicities and enhanced anti-leukemic potential against AML. CD33 CAR-NK cells have been investigated for AML therapy.
View Article and Find Full Text PDFNeurology
October 2025
Norcliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, WA.
Background And Objectives: Neuroimaging findings in immune effector cell-associated neurotoxicity syndrome (ICANS) have not been systematically described. We created the chimeric antigen receptor (CAR) T-cell Neurotoxicity Imaging Virtual Archive Library (CARNIVAL), a centralized imaging database for children and young adults receiving CAR T-cell therapy. Objectives of this study were to (1) characterize neuroimaging findings associated with ICANS and (2) determine whether specific ICANS-related neuroimaging findings are associated with individual neurologic symptoms.
View Article and Find Full Text PDF