A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multi-omics analysis revealing the taste characteristics and formation mechanism of Ocimum. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ocimum, a plant of significant economic value, finds extensive applications in the food, spice, and pharmaceutical industries. This study integrated sensory evaluation, metabolomics, and transcriptomics to systematically analyze taste differentiation in four Ocimum accessions (G126, G081, G096, G124). Standardized quantitative descriptive analysis (QDA) revealed distinct taste profiles: G126 (O. basilicum) exhibited high sweetness and low bitterness, G081 (O. kilimandscharicum) showed prominent minty notes, G096 (O. gratissimum) demonstrated intense piquancy, and G124 (O. gratissimum) displayed unique numbness. UPLC-MS/MS-based metabolomics identified 2275 metabolites, with key taste-metabolite correlations established: N-acetyl-tryptophan positively correlated with sweetness, N-isobutyl decanamide with numbness, flavonoids (particularly flavanones) with bitterness, and terpenoids (monoterpenoids) with minty perception. Transcriptomics uncovered 18 bitterness-associated DEGs (PAL, 4CL, C4H, CHS) in flavonoid pathways and 8 minty-linked DEGs (DXS, ispG, ispH, TPS) in terpenoid biosynthesis. Crucially, we constructed an integrated regulatory network linking sensory attributes, key metabolites, and genetic determinants. Our specific conclusions are: Non-sugar metabolite N-acetyl-tryptophan is the primary sweetness contributor in Ocimum; Genotype-specific expression of terpenoid/flavonoid pathway genes drives minty/bitter taste divergence; N-isobutyl decanamide represents a novel chemosensory marker for numbness. These findings provide molecular targets for flavor optimization in pharmaceutical and food applications of Ocimum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2025.117130DOI Listing

Publication Analysis

Top Keywords

n-isobutyl decanamide
8
ocimum
5
multi-omics analysis
4
analysis revealing
4
taste
4
revealing taste
4
taste characteristics
4
characteristics formation
4
formation mechanism
4
mechanism ocimum
4

Similar Publications