Synthesis of 1-cyanocyclohexaneacetic acid in a partial-mixed recirculating bed reactor with resin-immobilized nitrilase.

Bioprocess Biosyst Eng

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Immobilized enzyme bioreactors provide a controlled reaction environment and integrated reaction-separation processes for biocatalysis. In this study, a biocatalytic process based on resin-immobilized nitrilase and a partial-mixed recirculating bed bioreactor was developed for the synthesis of 1-cyanocyclohexaneacetic acid, a gabapentin intermediate. The resin catalyst prepared by immobilizing the regioselective nitrilase AcN-S on the activated amino resin LX-1000EPHA achieved 99.12% immobilization yield, 73.40 U/g specific activity, and 95.42% activity recovery when loaded with 10 mg/g crude enzyme. The resin catalyst (100 g/L) could convert 1 M (148.2 g/L) substrate 1-cyanocyclohexaneacetonitrile to 1-cyanocyclohexaneacetic acid within 18 h, achieving a conversion of 95.40%. At a substrate concentration of 0.5 M, > 85% conversion could still be achieved after 15 batches. In a partial-mixed recirculating bed reactor, the resin catalyst (100 g/L) could completely convert 500 mM substrate within 10 h, and achieve > 90% conversion after 20 batches, with residual activity of 93.23%. Resin activation and cross-linking treatment after immobilization were found to improve operational stability, reduce protein leakage, and ensure high immobilization yield and activity recovery. The reactor provided a low-shear environment and recirculating flow, which together improve catalyst reusability and reduce product inhibition. The constructed reaction system provides a solution for the efficient conversion of slightly soluble/insoluble substrates and the integration of reaction and separation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-025-03227-0DOI Listing

Publication Analysis

Top Keywords

1-cyanocyclohexaneacetic acid
12
partial-mixed recirculating
12
recirculating bed
12
resin catalyst
12
synthesis 1-cyanocyclohexaneacetic
8
bed reactor
8
resin-immobilized nitrilase
8
immobilization yield
8
activity recovery
8
catalyst 100 g/l
8

Similar Publications

Synthesis of 1-cyanocyclohexaneacetic acid in a partial-mixed recirculating bed reactor with resin-immobilized nitrilase.

Bioprocess Biosyst Eng

August 2025

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.

Immobilized enzyme bioreactors provide a controlled reaction environment and integrated reaction-separation processes for biocatalysis. In this study, a biocatalytic process based on resin-immobilized nitrilase and a partial-mixed recirculating bed bioreactor was developed for the synthesis of 1-cyanocyclohexaneacetic acid, a gabapentin intermediate. The resin catalyst prepared by immobilizing the regioselective nitrilase AcN-S on the activated amino resin LX-1000EPHA achieved 99.

View Article and Find Full Text PDF

Immobilization of Escherichia coli cells harboring a nitrilase with improved catalytic properties though polyethylenemine-induced silicification on zeolite.

Int J Biol Macromol

December 2021

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou

In the chemical-biological synthesis route of gabapentin, immobilized Escherichia coli cells harboring nitrilase are used to catalyze the biotransformation of intermediate 1-cyanocyclohexaneacetonitile to 1-cyanocyclohexaneacetic acid. Herein, we present a novel cell immobilization method, which is based on cell adsorption using 75 g/L Escherichia coli cells and 6 g/L zeolite, cell crosslinking using 3 g/L polyethylenemine and biomimetic silicification using 18 g/L hydrolyzed tetramethylorthosilicate. The constructed "hybrid biomimetic silica particles (HBSPs)" with core-shell structure showed a specific activity of 147.

View Article and Find Full Text PDF

Engineering a Pichia pastoris nitrilase whole cell catalyst through the increased nitrilase gene copy number and co-expressing of ER oxidoreductin 1.

Appl Microbiol Biotechnol

March 2020

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.

1-Cyanocyclohexaneacetic acid (1-CHAA) is a critical intermediate for the synthesis of the antiepileptic agent gabapentin. Previously, our group has established a novel manufacturing route for 1-CHAA through bioconversion catalyzed by an Escherichia coli (E. coli) nitrilase whole cell catalyst.

View Article and Find Full Text PDF

Enhanced catalytic stability and reusability of nitrilase encapsulated in ethyleneamine-mediated biosilica for regioselective hydrolysis of 1-cyanocycloalkaneacetonitrile.

Int J Biol Macromol

June 2019

National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Ha

Nitrilase-catalyzed regioselective hydrolysis of 1-cyanocyclohexaneacetonitrile (1-CHAN) is a green and efficient approach for the preparation of 1-cyanocyclohexaneacetic acid (1-CHAA), a key precursor for the synthesis of gabapentin. Here, a mesoporous biosilica particles prepared by the ethyleneamine-mediated silicification have been used as carrier for the encapsulation of nitrilase from Acidovorax facilis (NitA). The silica-encapsulated NitA (NitA@silica) with triethylenetetramine as an initiator showed the highest immobilization efficiency (98.

View Article and Find Full Text PDF

Highly efficient conversion of 1-cyanocycloalkaneacetonitrile using a "super nitrilase mutant".

Bioprocess Biosyst Eng

March 2019

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.

Nitrilase is the member of carbon-nitrogen hydrogen hydrolase superfamily, which has been widely used for the hydrolysis of nitriles into corresponding carboxylic acids. But most nitrilases are plagued by product inhibition in the industrial application. In this study, a "super nitrilase mutant" of nitrilase with high activity, thermostability and improved product tolerance from Acidovorax facilis ZJB09122 was characterized.

View Article and Find Full Text PDF