Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Using 4-bromoindole-3-carboxylic acid derivatives (amides or esters) as substrates, this paper successfully developed a trace water-promoted, palladium-catalyzed "one-pot" reaction strategy for synthesizing 4-amino/alkoxyindole-3-carboxylic acid products. With PdCl (5 mol %) as the precatalyst, Xantphos as the ligand, and cesium pivalate as the additive, this synthetic method innovatively integrates nucleophilic substitution of amides/esters with Pd-catalyzed C-N or C-O cross-coupling into a single reaction system, achieving efficient synergy of multistep transformations. This approach facilitates a modular and rapid assembly of multisubstituted indole-3-carboxylic acids, exhibiting broad functional group compatibility while maintaining good reaction yields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.5c01082 | DOI Listing |