Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Ursolic acid (UA) exhibits antitumor activity; however, its effects and mechanisms on triple-negative breast cancer (TNBC) cells are not well understood. The present study aimed to explore the anti- TNBC mechanisms of UA by network pharmacology and experimental validation.

Methods: TNBC cell lines MDA-MB-231 and BT-549 cells were treated with UA. A CCK-8 assay was performed to detect cell growth, while flow cytometry assessed cell cycle arrest and apoptosis. The underlying mechanism and potential targets of UA for TNBC treatment were investigated by network pharmacology, including PharmMapper database, GO, KEGG enrichment, and PPI analysis. The protein expressions and phosphorylation levels of FGFR1, AKT, and ERK were measured by western blot. Pull-down assay, cellular thermal shift assay (CETSA), and molecular docking were used to analyze the interaction between UA and FGFR1. Xenograft models were established to examine the effect of UA on TNBC tumor growth.

Results: UA effectively reduced cell viability, induced apoptosis, and arrested cell cycle in TNBC cells. Moreover, UA significantly regulated the expression of Bcl-2 and Bax to induce apoptosis. The results of network pharmacology and western blot suggested that UA reduced FGFR1/AKT/ERK pathway. Furthermore, pull-down, CETSA, and molecular docking results revealed that UA directly bound to FGFR1. In the xenograft model, UA inhibited the growth by suppressing FGFR1.

Discussion: In this study, we employed network pharmacology and experimental approaches to elucidate the mechanism of UA on TNBC. The results demonstrated that UA targeted FGFR1 to inhibit TNBC via mediating FGFR1/AKT/ERK pathway.

Conclusions: Our findings demonstrate that UA inhibits the FGFR1/AKT/ERK pathway by directly targeting FGFR1, thereby suppressing TNBC progression and supporting its potential as a therapeutic agent for TNBC treatment.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0118715206379579250722053647DOI Listing

Publication Analysis

Top Keywords

network pharmacology
20
fgfr1/akt/erk pathway
12
pharmacology experimental
12
tnbc
10
ursolic acid
8
triple-negative breast
8
breast cancer
8
tnbc cells
8
cell cycle
8
tnbc treatment
8

Similar Publications

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

Importance: Youth living with type 1 diabetes (T1D) are increasingly choosing automated insulin delivery (AID) systems to manage their blood glucose. Few systematic reviews meta-analyzing results from randomized clinical trials (RCTs) are available to guide decision-making.

Objective: To study the association of prolonged AID system use in an outpatient setting with measures of glucose management and quality of life in youth with T1D.

View Article and Find Full Text PDF

The emergence of antimicrobial resistance (AMR) Escherichia coli in poultry farming is a growing global public health concern, particularly in Bangladesh, where the use of antibiotics remains largely unregulated. This study aimed to determine the prevalence and AMR patterns of E. coli isolated from broiler chickens in Sylhet district of Bangladesh and to investigate the network of coexisting resistance traits among the isolates.

View Article and Find Full Text PDF

Mitochondria continually undergo fission to maintain their network and health. Nascent fission sites are marked by the ER, which facilitates actin polymerization to drive calcium flux into the mitochondrion and constrict the inner mitochondrial membrane. Septins are a major eukaryotic cytoskeleton component that forms filaments that can both directly and indirectly modulate other cytoskeleton components, including actin.

View Article and Find Full Text PDF

Purpose: To assess the pharmacodynamic effects and therapeutic mechanisms of modified Fuzi decoction (MFZD) in osteoarthritis (OA), particularly OA-related inflammation.

Methods: The main components of MFZD were identified using Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). An OA model was established in Sprague-Dawley rats via intra-articular injection of monoiodoacetate (MIA) to evaluate the anti-OA efficacy of MFZD via gavage.

View Article and Find Full Text PDF