A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Late-Life Aerobic Exercise Attenuates DNA Damage and Telomere Dysfunction in Non-Atheroprone but Not in Atheroprone Aortic Regions. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cellular senescence is a state of persistent cell cycle arrest and is a critical contributor to arterial aging. The primary drivers of cellular senescence are the DNA damage response (DDR) and telomere dysfunction, which is induced by increasing exposure to DNA-damaging stimuli such as atheroprone shear stress. While late-life aerobic exercise is an effective intervention to mitigate arterial aging, its specific impact on the DDR and telomere dysfunction is unknown and may not show uniform benefits across aortic regions subjected to atheroprone and non-atheroprone shear stress. This study investigates the influence of late-life aerobic exercise on DDR and telomere dysfunction in endothelial cells (EC) and vascular smooth muscle cells (VSMC) within the aortic regions exposed to distinct shear stress patterns. Old male C57BL6 mice were randomly assigned to a negative control (NC) group and habitual voluntary wheel running (VWR) groups for 16 weeks. The habitual VWR groups were further categorized into low (LR), moderate (MR), and high running (HR) groups based on their daily running distance throughout the intervention. EC and VSMC DDR and telomere dysfunction in NC, LR, and MR groups were comparable across the aortic regions. Interestingly, EC DDR and telomere dysfunction were mitigated in the non-atheroprone aortic regions in HR, but not in VSMC. These improvements were independent of telomere length. Collectively, these data provide evidence that late-life aerobic exercise selectively mitigates DDR and telomere dysfunction in ECs within non-atheroprone aortic regions, rather than atheroprone aortic regions, in an exercise volume-dependent manner, independent of telomere length.

Download full-text PDF

Source
http://dx.doi.org/10.1111/acel.70196DOI Listing

Publication Analysis

Top Keywords

telomere dysfunction
28
aortic regions
28
ddr telomere
24
late-life aerobic
16
aerobic exercise
16
shear stress
12
telomere
9
dna damage
8
atheroprone aortic
8
cellular senescence
8

Similar Publications