98%
921
2 minutes
20
In cyber-physical systems governed by nonlinear partial differential equations (PDEs), real-time control is often limited by sparse sensor data and high-dimensional system dynamics. Deep reinforcement learning (DRL) has shown promise for controlling such systems, but training DRL agents directly on full-order simulations is computationally intensive. This paper presents a sensor-driven, non-intrusive reduced-order modeling (NIROM) framework called FAE-CAE-LSTM, which combines convolutional and fully connected autoencoders with a long short-term memory (LSTM) network. The model compresses high-dimensional states into a latent space and captures their temporal evolution. A DRL agent is trained entirely in this reduced space, interacting with the surrogate built from sensor-like spatiotemporal measurements, such as pressure and velocity fields. A CNN-MLP reward estimator provides data-driven feedback without requiring access to governing equations. The method is tested on benchmark systems including Burgers' equation, the Kuramoto-Sivashinsky equation, and flow past a circular cylinder; accuracy is further validated on flow past a square cylinder. Experimental results show that the proposed approach achieves accurate reconstruction, robust control, and significant computational speedup over traditional simulation-based training. These findings confirm the effectiveness of the FAE-CAE-LSTM surrogate in enabling real-time, sensor-informed, scalable DRL-based control of nonlinear dynamical systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390565 | PMC |
http://dx.doi.org/10.3390/s25165149 | DOI Listing |
Front Public Health
September 2025
Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
Background: Chronic kidney disease (CKD), a global health challenge, is closely linked to renal fibrosis progression. Copper, an essential trace element, influences cellular functions, yet its role in CKD-related fibrosis remains unclear. This study explores the causal relationship between serum copper levels and renal fibrosis in CKD.
View Article and Find Full Text PDFNutr J
September 2025
Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, 208 Huancheng Dong Road, Hangzhou, 310003, Zhejiang Province, China.
Background: The potential association between dietary inflammatory index (DII) and colorectal cancer (CRC) risk, as well as colorectal adenomas (CRA) risk, has been extensively studied, but the findings remain inconclusive. We conducted this systematic review and dose-response meta-analysis to investigate the relationship between the DII and CRC and CRA.
Methods: We comprehensively searched the PubMed, Embase, Cochrane Library, and Web of Science databases for cohort and case-control studies reporting the relationship between DII and CRA, or between DII and CRC, as of 15 July 2025.
ISA Trans
August 2025
Department of Vehicle Engineering and Jiangsu Engineering Research Center of Vehicle Distributed Drive and Intelligent Wire Control Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; Department of Vehicle Engineering and Jiangsu Engineering Research Center of Vehi
The steer-by-wire (SbW) system, as the core component of vehicle steering, needs to track the front wheel angle accurately. To mitigate the angle tracking accuracy degradation caused by D-Q axes coupling, time-varying motor electrical parameters, and load disturbance, a fractional-order adaptive fuzzy decentralized tracking control (FAFDTC) strategy is proposed in this paper. First, considering time-varying motor parameters, D-Q axes coupling, and fractional-order characteristics of components, a fractional-order SbW interconnected system is constructed to enhance its ability to characterize nonlinearities, time-varying dynamics, and system coupling.
View Article and Find Full Text PDFPLoS One
September 2025
The George Institute for Global Health, Imperial College London, London, United Kingdom.
Background: Tobacco use remains a major public health challenge in sub-Saharan Africa, with significant gendered dimensions. Place of residence is an important determinant, as rural and urban contexts shape exposure, access, and consumption patterns. This study investigates rural-urban disparities in tobacco use among women in sub-Saharan Africa, with a focus on quantifying the relative contributions of socioeconomic factors.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2025
In essence, reinforcement learning (RL) solves optimal control problem (OCP) by employing a neural network (NN) to fit the optimal policy from state to action. The accuracy of policy approximation is often very low in complex control tasks, leading to unsatisfactory control performance compared with online optimal controllers. A primary reason is that the landscape of value function is always not only rugged in most areas but also flat on the bottom, which damages the convergence to the minimum point.
View Article and Find Full Text PDF