Personalized Federated Learning Based on Dynamic Parameter Fusion and Prototype Alignment.

Sensors (Basel)

School of Computer and Electronic Information, Guangxi University, Nanning 530004, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To address the limitation of generalization of federated learning under non-independent and identically distributed (Non-IID) data, we propose FedDFPA, a personalized federated learning framework that integrates dynamic parameter fusion and prototype alignment. We design a class-wise dynamic parameter fusion mechanism that adaptively fuses global and local classifier parameters at the class level. It enables each client to preserve its reliable local knowledge while selectively incorporating beneficial global information for personalized classification. We introduce a prototype alignment mechanism based on both global and historical information. By aligning current local features with global prototypes and historical local prototypes, it improves cross-client semantic consistency and enhances the stability of local features. To evaluate the effectiveness of FedDFPA, we conduct extensive experiments on various Non-IID settings and client participation rates. Compared to the average performance of state-of-the-art algorithms, FedDFPA improves the average test accuracy by 3.59% and 4.71% under practical and pathological heterogeneous settings, respectively. These results confirm the effectiveness of our dual-mechanism design in achieving a better balance between personalization and collaboration in federated learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389858PMC
http://dx.doi.org/10.3390/s25165076DOI Listing

Publication Analysis

Top Keywords

federated learning
16
dynamic parameter
12
parameter fusion
12
prototype alignment
12
personalized federated
8
fusion prototype
8
local features
8
local
5
learning
4
learning based
4

Similar Publications

Learning from history for personalized federated learning.

Neural Netw

September 2025

College of Information Science, North China University of Technology, Beijing, China. Electronic address:

Personalized Federated Learning (pFL) has received extensive attentions, due to its ability to effectively process non-IID data distributed among different clients. However, most of the existing pFL methods focus on the collaboration between global and local models to enrich the personalization process, but ignoring a lot of valuable historical information, which represents the unique learning trajectory of each client. In this paper, we propose a pFL method called FedLFH, which introduces a tracking variable that allows each client to preserve historical information to facilitate personalization.

View Article and Find Full Text PDF

Applications of Federated Large Language Model for Adverse Drug Reactions Prediction: Scoping Review.

J Med Internet Res

September 2025

Department of Information Systems and Cybersecurity, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, United States, 1 (210) 458-6300.

Background: Adverse drug reactions (ADR) present significant challenges in health care, where early prevention is vital for effective treatment and patient safety. Traditional supervised learning methods struggle to address heterogeneous health care data due to their unstructured nature, regulatory constraints, and restricted access to sensitive personal identifiable information.

Objective: This review aims to explore the potential of federated learning (FL) combined with natural language processing and large language models (LLMs) to enhance ADR prediction.

View Article and Find Full Text PDF

Protein kinases are central regulators of cell signaling and play pivotal roles in a wide array of diseases, most notably cancer and autoimmune disorders. The clinical success of kinase inhibitors-such as imatinib and osimertinib-has firmly established kinases as valuable drug targets. However, the development of selective, potent inhibitors remains challenging due to the conserved nature of the ATP-binding site, off-target effects, resistance mutations, and patient-specific variability.

View Article and Find Full Text PDF

Large-scale genomics data combined with Electronic Health Records (EHRs) illuminate the path towards personalized disease management and enhanced medical interventions. However, the absence of "gold standard" disease labels makes the development of machine learning models a challenging task. Additionally, imbalances in demographic representation within datasets compromise the development of unbiased healthcare solutions.

View Article and Find Full Text PDF

Early diagnosis of Parkinson's disease (PD) is crucial for timely treatment and disease management. Recent studies link PD to impaired facial muscle control, manifesting as "masked face" symptoms, offering a novel diagnostic approach through facial expression analysis. However, data privacy concerns and legal restrictions have resulted in significant "data silos", hindering data sharing and limiting the accuracy and generalizability of existing diagnostic models due to small, localized datasets.

View Article and Find Full Text PDF