98%
921
2 minutes
20
The oxygen inhibition and migration of micromolecules which stem from photoinitiators (PIs) remain two critical challenges to address in radical photocuring. In this work, we reported a one-step ternary copolymerization strategy to construct a one-component macromolecular photoinitiator (PPI) using polymerizable thioxanthone (TX), amine (N), and fluorinated alkane (F) as monomers. Then, we utilize the low surface energy of F unit and macromolecular skeleton to reduce oxygen inhibition and migration. Compared to micromolecule TX, PPI also exhibits a broad absorption in the 250-430 nm range, and a higher molar extinction coefficient. The effects of the TX, N, and F component ratios on the photoinitiation efficiency of PPI were systematically investigated, and the photopolymerization kinetics revealed that the increased content of F unit can eliminate the oxygen inhibition of PPI. As a result, PPI demonstrates the more superior photoinitiation efficiency compared to the traditional TX/N two-component macromolecule photoinitiation system. Migration experiments indicated that there is a 60% reduction in the migration rate for PPI compared to the TX/N photoinitiation system. This work provides an effective strategy to address oxygen inhibition and micromolecule migration issues in radical photocuring, showing potential applications in food and pharmaceutical packaging fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12390099 | PMC |
http://dx.doi.org/10.3390/polym17162252 | DOI Listing |
Front Immunol
September 2025
Institute of Pulmonary Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
Neutrophil extracellular traps (NETs) are DNA-protein structures released during a form of programmed neutrophil death known as NETosis. While NETs have been implicated in both tumor inhibition and promotion, their functional role in cancer remains ambiguous. In this study, we compared the NET-forming capacity and functional effects of NETs derived from lung cancer (LC) patients and healthy donors (H).
View Article and Find Full Text PDFRSC Adv
September 2025
Departament de Química, Universitat Autònoma de Barcelona Bellaterra 08193 Barcelona Spain
Mammalian ALOX15 are allosteric enzymes but the mechanism of allosteric regulation remains a matter of discussion. Octyl (-(5-(1-indol-2-yl)-2-methoxyphenyl)sulfamoyl)carbamate inhibits the linoleate oxygenase activity of ALOX15 at nanomolar concentrations, but oxygenation of arachidonic acid is hardly affected. The mechanism of substrate selective inhibition suggests inter-monomer communication within the allosteric ALOX15 dimer complex, in which the inhibitor binding to monomer A induces conformational alterations in the structure of the active site of monomer B.
View Article and Find Full Text PDFRev Cardiovasc Med
August 2025
Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 453003 Xinxiang, Henan, China.
Myocarditis is a life-threatening inflammatory disorder that affects the cardiac muscle tissue. Current treatments merely regulate heart function but fail to tackle the root cause of inflammation. In myocarditis, the initial wave of inflammation is characterized by the presence of neutrophils.
View Article and Find Full Text PDFMol Nutr Food Res
September 2025
Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo, Japan.
Health hazards caused by air pollutants are increasing worldwide (SDGs 3.9), but no established prevention methods exist. Recently, we showed that intraperitoneal administration of epigallocatechin gallate (EGCG) prevents air pollutant-induced acute lung injury.
View Article and Find Full Text PDFCell Death Dis
September 2025
Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
In recent years, there has been a rapid increase in the incidence of thyroid carcinoma (TC). Our study focuses on the regulatory effect of circular RNAs on metabolism of TC, aiming to provide new insights into the mechanisms of progression and a potential therapeutic target for TC. In this study, we identified high expression levels of circPSD3 in TC tissues through RNA sequencing.
View Article and Find Full Text PDF